您的位置:首页 > 运维架构 > Linux

Linux内核I2C子系统驱动(三)

2011-08-20 18:58 323 查看
当适配器加载到内核后,就针对具体设备编写I2C设备驱动。编写设备驱动有两种方法,一种是利用系统提供的i2c-dev.c实现,另一种为i2c编写一个独立的设备驱动。
一、i2c-dev.c控制i2c设备

i2c-dev.c没有针对具体设备来设计,提供了通用i2cdev_read()、i2cdev_write()函数来对应用户空间要使用的read()和write()文件操作接口,这两个函数分别调用I2C 核心的i2c_master_recv()和i2c_master_send()函数来构造一条I2C 消息并引发适配器algorithm 通信函数的调用,完成消息的传输。但是i2c_read()、i2c_write()对于一些复杂消息(eeprom字节读ReStart模式)并不太适用,针对以上情况,可以使用i2cdev_ioctl()实现消息组的传输,通过I2C_RDWR
IOCTL命令实现。

常用的IOCTL包括包括I2C_SLAVE(设置从设备地址)、I2C_RETRIES(没有收到设备ACK 情况下的重试次数,默认为1)、I2C_TIMEOUT(超时)以及I2C_RDWR等。应用程序通过i2c_rdwr_ioctl_data结构体来给内核传递消息,结构体定义如下

struct i2c_rdwr_ioctl_data {

struct i2c_msg __user *msgs; /* pointers to i2c_msgs */

__u32 nmsgs; /* number of i2c_msgs */

};

下面是利用i2c_dev.c操作i2c设备AT24C02具体的代码,这种方法是从应用层完成i2c设备驱动,代码摘自/content/840566.html

view plain

#include <stdio.h>
#include <linux/types.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <errno.h>
#define I2C_RETRIES 0x0701
#define I2C_TIMEOUT 0x0702
#define I2C_RDWR 0x0707
/*********参数定义与内核一致,路径include/linux/i2c-dev.h*******/

struct i2c_msg
{
unsigned short addr;
nsigned short flags;
#define I2C_M_TEN 0x0010
#define I2C_M_RD 0x0001
unsigned short len;
unsigned char *buf;
};

struct i2c_rdwr_ioctl_data
{
struct i2c_msg *msgs;
int nmsgs;
/* nmsgs这个数量决定了有多少开始信号,对于“单开始时序”,取1*/
};

int main()
{
int fd,ret;
struct i2c_rdwr_ioctl_data e2prom_data;
fd=open("/dev/i2c-0",O_RDWR);
/*
*/dev/i2c-0是在注册i2c-dev.c后产生的,代表一个可操作的适配器。如果不使用i2c-dev.c
*的方式,就没有,也不需要这个节点。
*/
if(fd<0)
{
perror("open error");
}
e2prom_data.nmsgs=2;
/*
*因为操作时序中,最多是用到2个开始信号(字节读操作中),所以此将
*e2prom_data.nmsgs配置为2
*/
e2prom_data.msgs=(struct i2c_msg*)malloc(e2prom_data.nmsgs*sizeof(struct i2c_msg));
if(!e2prom_data.msgs)
{
perror("malloc error");
exit(1);
}
ioctl(fd,I2C_TIMEOUT,1);/*超时时间*/
ioctl(fd,I2C_RETRIES,2);/*重复次数*/

/***write data to e2prom**/
e2prom_data.nmsgs=1;
(e2prom_data.msgs[0]).len=2; //1个 e2prom 写入目标的地址和1个数据
(e2prom_data.msgs[0]).addr=0x50;//e2prom 设备地址
(e2prom_data.msgs[0]).flags=0; //write
(e2prom_data.msgs[0]).buf=(unsigned char*)malloc(2);
(e2prom_data.msgs[0]).buf[0]=0x10;// e2prom 写入目标的地址
(e2prom_data.msgs[0]).buf[1]=0x58;//the data to write

ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
if(ret<0)
{
perror("ioctl error1");
}
sleep(1);

/******read data from e2prom*******/
e2prom_data.nmsgs=2;
(e2prom_data.msgs[0]).len=1; //e2prom 目标数据的地址
(e2prom_data.msgs[0]).addr=0x50; // e2prom 设备地址
(e2prom_data.msgs[0]).flags=0;//write
(e2prom_data.msgs[0]).buf[0]=0x10;//e2prom数据地址
(e2prom_data.msgs[1]).len=1;//读出的数据
(e2prom_data.msgs[1]).addr=0x50;// e2prom 设备地址
(e2prom_data.msgs[1]).flags=I2C_M_RD;//read
(e2prom_data.msgs[1]).buf=(unsigned char*)malloc(1);//存放返回值的地址。
(e2prom_data.msgs[1]).buf[0]=0;//初始化读缓冲

ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
if(ret<0)
{
perror("ioctl error2");
}
printf("buff[0]=%x/n",(e2prom_data.msgs[1]).buf[0]);
/***打印读出的值,没错的话,就应该是前面写的0x58了***/
close(fd);
return 0;
}

二、内核中编写i2c设备驱动

内核编写i2c设备驱动支持两种方式:Adapter方式(LEGACY)和Probe方式(new style)。

1.legacy方式

此方法驱动需要自己创建i2c_client,并且要知道芯片的地址,在内核目录documentation/i2c/upgrading-clients中有一个例程。

i2c_driver构建

static struct i2c_driver at24c02_driver = {

.driver = {

.name = "at24c02",

},

.id = I2C_DRIVERID_EEPROM,

.attach_adapter = at24c02_attach_adapter,

.detach_client = at24c02_detach_client,

};

I2C设备驱动的加载与卸载函数模板

static int __init at24c02_init(void)

{

return i2c_add_driver(&at24c02_driver);

}

i2c_add_driver的执行回引发i2c_driver结构体at24c02_attach_adapter的执行,若内核中注册了i2c适配器,就顺序调用这些适配器来连接i2c设备,at24c02_attach_adapter调用i2c核心i2c_probe探测设备

static int at24c02_attach_adapter(struct i2c_adapter *adapter)

{

return i2c_probe(adapter, &addr_data, at24c02_detect);

}

static unsigned short normal_i2c[] = { 0x50, 0x51, 0x52, 0x53, 0x54,

0x55, 0x56, 0x57, I2C_CLIENT_END };

/* Insmod parameters */

I2C_CLIENT_INSMOD_1(at24c02);

其中第二个参数add_data是i2c_client_address_data类型的变量,由normal_i2c[]通过宏I2C_CLIENT_INSMOD_1构建而成,具体方法参考i2c.h文件。normal_i2c是i2c芯片的地址,如果地址与芯片对应不上,无法探测到设备,当探测到目标设备后,调用at24c02_detect,把探测到得地址address作为参数传入。

#define AT24C02_MAJOR 250

static int at24c02_major = AT24C02_MAJOR;

struct at24c02_data {

struct cdev cdev;

struct i2c_client client;

struct mutex update_lock;

u8 data[EEPROM_SIZE]; /* Register values */

};

static int at24c02_detect(struct i2c_adapter *adapter, int address, int kind)

{

struct i2c_client *new_client;

struct at24c02_data *data;

int err = 0,result;

dev_t at24c02_dev=MKDEV(at24c02_major,0);

if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA

| I2C_FUNC_SMBUS_BYTE)) //判断适配器功能

goto exit;

if (!(data = kzalloc(sizeof(struct at24c02_data), GFP_KERNEL))) {

err = -ENOMEM;

goto exit;

}

new_client = &data->client;

memset(data->data, 0xff, EEPROM_SIZE);

i2c_set_clientdata(new_client, data);

new_client->addr = address;

new_client->adapter = adapter;

new_client->driver = &at24c02_driver;

new_client->flags = 0;

/* Fill in the remaining client fields */

strlcpy(new_client->name, "at24c02", I2C_NAME_SIZE);

mutex_init(&data->update_lock);

/* Tell the I2C layer a new client has arrived */

if ((err = i2c_attach_client(new_client)))

goto exit_kfree;

if(at24c02_major)

{

result=register_chrdev_region(at24c02_dev,1,”at24c02”);

}

else

{

result=alloc_chrdev_region(&at24c02_dev,0,1,”at24c02”);

at24c02_major=MAJOR(at24c02_dev);

}

if(result<0)

{

printk(KERN_NOTICE “Unable to get region %d/n”,result);

err=result;

goto exit_detach;

}

at24c02_setup_cdev(data,0); //注册字符设备at24c02_fops

return 0;

exit_detach:

i2c_detach_client(new_client);

exit_kfree:

kfree(data);

exit:

return err;

}

static void at24c02_setup_cdev(struct at24c02_data *dev,int index)

{

int err,at24c02_dev=MKDEV(at24c02_major,index);

cdev_init(&dev->cdev,&at24c02_fops);

dev_cdev.owner=THIS_MODULE;

err=cdev_add(&dev->cdev,at24c02_dev,1);

if(err)

printk(KERN_NOTICE "error %d adding at24c02 %d/n",err,index);

}

i2c设备驱动卸载函数进行i2c_del_driver调用后,顺序调用内核中注册的适配器断开注册过的i2c设备,此过程是调用at24c02_detach_client实现的。

static void __exit at24c02_exit(void)

{

i2c_del_driver(&at24c02_driver);

}

static int at24c02_detach_client(struct i2c_client *client)

{

int err;

struct at24c02_data *data;

data=i2c_get_client(client);

cdev_del(&(data->cdev));

unregister_chrdev_region(MKDEV(at24c02_major, 0), 1);

err = i2c_detach_client(client);

if (err)

return err;

kfree(data);

return 0;

}

字符驱动的实现

struct file_operations at24c02_fops = {

.owner = THIS_MODULE,

.read= at24c02 _read,

.write= at24c02 _write,

.open= at24c02 _open,

.release = at24c02_release,

};

字符设备驱动不在详述,主要说明如何调用适配器完成数据传输。首先构造消息,通过i2c_transfer来传递,i2c_transfer找到对应适配器algorithm通信方法master_xfer最终完成i2c消息处理。下面是一个关于设备驱动的读函数,其他类似。

static int at24c02_open(struct inode *inode, struct file *file)

{

struct at24c02_data *data;

data=container_of(inode->i_cdev,struct at24c02_data,cdev);

file->private_data = data;

return 0;

}

static int at24c02_read(struct file *filp, char __user *buff,size_t count, loff_t *offp)

{

int ret;

struct i2c_msg msg[2];

char addr = 0;

struct at24c02_data *data=file->private_data;

if (count > 1024)

{

return -EINVAL;

}

msg[0].addr = data->client->addr;

msg[0].flags = 0; /* write */

msg[0].len = 1; /* 1个地址 */

msg[0].buf = &addr;

msg[1].addr = data->client->addr;

msg[1].flags = I2C_M_RD; /* read */

msg[1].len = count; /* 要读的数据个数 */

msg[1].buf = data->data;

ret = i2c_transfer(at24c02_client->adapter, msg, 2);

if (ret == 2)

{

copy_to_user(buff, data->data, count);

return count;

}

else

return -EIO;

}

目前适配器主要支持的传输方法有两种:master_xfer和smbus_xfer,从i2c_algorithm结构体可看出。一般来说,若适配器支持master_xfer那么它可以模拟支持smbus,但只实现smbus_xfer,则不支持master_xfer传输。当然,上面的驱动也可以采用smbus方式完成传输。采用LEGACY方式在2.6.32.2内核下编译不过去,主要是i2c核心中有些函数不存在,所以,设备驱动发展方向是new style方式。

2.new style方式

构建i2c_driver

static struct i2c_driver at24c02_driver = {

.driver = {

.name = "at24c02",

.owner = THIS_MODULE,

},

.probe = at24c02_probe,

.remove = __devexit_p(at24c02_remove),

.id_table = at24c02_id,

};

加载与注销

static int __init at24c02_init(void)

{

return i2c_add_driver(&at24c02_driver);

}

module_init(at24c02_init);

i2c_add_driver会将驱动注册到总线上,探测到i2c设备就会调用at24c02_probe,探测主要是用i2c_match_id函数比较client的名字和id_table中名字,如果相等,则探测到i2c设备,本驱动中id_table如下:

static const struct i2c_device_id at24c02_id[] = {

{ "at24c02", 0 },

{ }

};

MODULE_DEVICE_TABLE(i2c, at24c02_id);

MODULE_DEVICE_TABLE宏是用来生成i2c_device_id。在legacy方式中i2c_client是自己创建的,而此处的i2c_client如何得到?实际上是在i2c_register_board_info函数注册i2c_board_info过程中构建的,所以arch/arm/mach-s3c2440/mach-smdk2440.c中添加注册信息。

static struct i2c_board_info i2c_devices[] __initdata = {

{ I2C_BOARD_INFO("at24c02", 0x50), },

};

static void __init smdk2440_machine_init(void)

{

i2c_register_board_info(0,i2c_devices,ARRAY_SIZE(i2c_devices));

s3c24xx_fb_set_platdata(&smdk2440_fb_info);

s3c_i2c0_set_platdata(NULL);

platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

smdk_machine_init();

}

如果没有注册i2c信息,就探测不到i2c设备。探测到at24c02设备后就会调用at24c02_probe函数。

static int __devinit at24c08b_probe(struct i2c_client *client,const struct i2c_device_id *id)

{

struct at24c02_data *data;

int err = 0,result;

dev_t at24c02_dev=MKDEV(at24c02_major,0);

if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA

| I2C_FUNC_SMBUS_BYTE)) //判断适配器功能

goto exit;

if (!(data = kzalloc(sizeof(struct at24c02_data), GFP_KERNEL))) {

err = -ENOMEM;

goto exit;

}

memset(data, 0, sizeof(struct at24c02_data));

data->client=client;

i2c_set_clientdata(client, data);

if(at24c02_major)

{

result=register_chrdev_region(at24c02_dev,1,”at24c02”);

}

else

{

result=alloc_chrdev_region(&at24c02_dev,0,1,”at24c02”);

at24c02_major=MAJOR(at24c02_dev);

}

if(result<0)

{

printk(KERN_NOTICE “Unable to get region %d/n”,result);

err=result;

goto exit_kfree;

}

at24c02_setup_cdev(data,0); //注册字符设备at24c02_fops

return 0;

exit_kfree:

kfree(data);

exit:

return err;

}

probe函数主要注册了字符设备,通过data->client=client获得的相关信息。关于at24c02_fops结构体的完善,由于与前面一种方法类似,这里就不详述。最后就是驱动的注销。

static void __exit at24c02_exit(void)

{

i2c_del_driver(&at24c02_driver);

}

module_exit(at24c02_exit);

static int __devexit at24c02_remove(struct i2c_client *client)

{

int err;

struct at24c02_data *data;

data=i2c_get_client(client);

cdev_del(&(data->cdev));

unregister_chrdev_region(MKDEV(at24c02_major, 0), 1);

kfree(data);

return 0;

}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: