您的位置:首页 > 产品设计 > UI/UE

CRC校验的精彩介绍(A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS)

2011-01-24 18:35 579 查看

水平有限,不敢翻译,亵渎了好文章

A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS

Contents:

[Sub-ToC
] for this document
| Main [Table 'O Contents
]

1
. Preface

1.1) About the Author & Copyright

1.2) Abstract

2
. Introduction: Error Detection

3
. The Need For Complexity

4
. The Basic Idea Behind CRC Algorithms

5
. Polynomical Arithmetic

Jump to [Next
] segment

[Document Version: 3.00
]
[Last Updated: 9/24/96
]

1
. Preface

1.1) About the Author & Copyright

"Everything you wanted to know about CRC algorithms, but were afraid
to ask for fear that errors in your understanding might be detected."

Author : Ross N. Williams

E-Mail : ross@guest.adelaide.edu.au

Date : 19 August 1993

Version : 3.00

FTP: ftp.adelaide.edu.au/pub/rocksoft
/crc_v3.txt

WWW: http://www.on.net/clients/rocksoft/rocksoft/

Company : Rocksoft(tm) Pty Ltd

Snail : 16 Lerwick Avenue, Hazelwood Park 5066, Australia

Fax : +61 8 373-4911 (c/- Internode Systems Pty Ltd)

Phone : +61 8 379-9217 (10am to 10pm Adelaide Australia time)

Note : "Rocksoft" is a trademark of Rocksoft Pty Ltd, Australia

Status: Copyright (C) Ross Williams, 1993,1994,1995,1996. However, permission is
granted to make and distribute verbatim copies of this
document provided that this information block and copyright
notice is included. Also, the C code modules included
in this document are fully PUBLIC DOMAIN (PD)

.

Thanks: Thanks to Jean-loup Gailly (jloup@chorus.fr
) and Mark Adler (me@quest.jpl.nasa.gov
) who both proof read this document and picked out
lots of nits as well as some big fat bugs.

C sources to are referenced in this document:

crcmodel.h
(0KB)

crcmodel.c
(0KB)

crctable.c
(0KB)

1.2) Abstract

This document explains CRCs (Cyclic Redundancy Codes) and their
table-driven implementations in full, precise detail. Much of the
literature on CRCs, and in particular on their table-driven
implementations, is a little obscure (or at least seems so to me).
This document is an attempt to provide a clear and simple no-nonsense
explanation of CRCs and to absolutely nail down every detail of the
operation of their high-speed implementations. In addition to this,
this document presents a parameterized model CRC algorithm called the
"Rocksoft^tm Model CRC Algorithm". The model algorithm can be
parameterized to behave like most of the CRC implementations around,
and so acts as a good reference for describing particular algorithms.
A low-speed implementation of the model CRC algorithm is provided in
the C programming language. Lastly there is a section giving two forms
of high-speed table driven implementations, and providing a program
that generates CRC lookup tables.

2
. Introduction: Error Detection

The aim of an error detection technique is to enable the receiver of a
message transmitted through a noisy (error-introducing) channel to
determine whether the message has been corrupted. To do this, the
transmitter constructs a value (called a checksum) that is a function
of the message, and appends it to the message. The receiver can then
use the same function to calculate the checksum of the received
message and compare it with the appended checksum to see if the
message was correctly received. For example, if we chose a checksum
function which was simply the sum of the bytes in the message mod 256
(i.e. modulo 256), then it might go something as follows. All numbers
are in decimal.

Message                    :  6 23  4

Message with checksum      :  6 23  4 33

Message after transmission :  6 27  4 33


In the above, the second byte of the message was corrupted from 23 to
27 by the communications channel. However, the receiver can detect
this by comparing the transmitted checksum (33) with the computer
checksum of 37 (6 + 27 + 4). If the checksum itself is corrupted, a
correctly transmitted message might be incorrectly identified as a
corrupted one. However, this is a safe-side failure. A dangerous-side
failure occurs where the message and/or checksum is corrupted in a
manner that results in a transmission that is internally consistent.
Unfortunately, this possibility is completely unavoidable and the best
that can be done is to minimize its probability by increasing the
amount of information in the checksum (e.g. widening the checksum from
one byte to two bytes).

Other error detection techniques exist that involve performing complex
transformations on the message to inject it with redundant
information. However, this document addresses only CRC algorithms,
which fall into the class of error detection algorithms that leave the
data intact and append a checksum on the end. i.e.:

<original intact message> <checksum>


3
. The Need For Complexity

In the checksum example in the previous section, we saw how a
corrupted message was detected using a checksum algorithm that simply
sums the bytes in the message mod 256:

Message                    :  6 23  4

Message with checksum      :  6 23  4 33

Message after transmission :  6 27  4 33


A problem with this algorithm is that it is too simple. If a number of
random corruptions occur, there is a 1 in 256 chance that they will
not be detected. For example:

Message                    :  6 23  4

Message with checksum      :  6 23  4 33

Message after transmission :  8 20  5 33


To strengthen the checksum, we could change from an 8-bit register to
a 16-bit register (i.e. sum the bytes mod 65536 instead of mod 256) so
as to apparently reduce the probability of failure from 1/256 to
1/65536. While basically a good idea, it fails in this case because
the formula used is not sufficiently "random"; with a simple summing
formula, each incoming byte affects roughly only one byte of the
summing register no matter how wide it is. For example, in the second
example above, the summing register could be a Megabyte wide, and the
error would still go undetected. This problem can only be solved by
replacing the simple summing formula with a more sophisticated formula
that causes each incoming byte to have an effect on the entire
checksum register.

Thus, we see that at least two aspects are required to form a strong
checksum function:

WIDTH

A register width wide enough to provide a low a-priori
probability of failure (e.g. 32-bits gives a 1/2^32 chance of failure).

CHAOS

A formula that gives each input byte the potential to change
any number of bits in the register.

Note
: The term "checksum" was presumably used to describe early
summing formulas, but has now taken on a more general meaning
encompassing more sophisticated algorithms such as the CRC ones. The
CRC algorithms to be described satisfy the second condition very well,
and can be configured to operate with a variety of checksum widths.

4
. The Basic Idea Behind CRC Algorithms

Where might we go in our search for a more complex function than
summing? All sorts of schemes spring to mind. We could construct
tables using the digits of pi, or hash each incoming byte with all the
bytes in the register. We could even keep a large telephone book
on-line, and use each incoming byte combined with the register bytes
to index a new phone number which would be the next register value.
The possibilities are limitless.

However, we do not need to go so far; the next arithmetic step
suffices. While addition is clearly not strong enough to form an
effective checksum, it turns out that division is, so long as the
divisor is about as wide as the checksum register.

The basic idea of CRC algorithms is simply to treat the message as an
enormous binary number, to divide it by another fixed binary number,
and to make the remainder from this division the checksum. Upon
receipt of the message, the receiver can perform the same division and
compare the remainder with the "checksum" (transmitted remainder).

Example: Suppose the the message consisted of the two bytes (6,23) as
in the previous example. These can be considered to be the hexadecimal
number 0617 which can be considered to be the binary number
0000-0110-0001-0111. Suppose that we use a checksum register one-byte
wide and use a constant divisor of 1001, then the checksum is the
remainder after 0000-0110-0001-0111 is divided by 1001. While in this
case, this calculation could obviously be performed using common
garden variety 32-bit registers, in the general case this is messy. So
instead, we'll do the division using good-'ol long division which you
learned in school (remember?). Except this time, it's in binary:

...0000010101101 = 00AD =  173 = QUOTIENT

____-___-___-___-

9= 1001 ) 0000011000010111 = 0617 = 1559 = DIVIDEND

DIVISOR   0000.,,....,.,,,

----.,,....,.,,,

0000,,....,.,,,

0000,,....,.,,,

----,,....,.,,,

0001,....,.,,,

0000,....,.,,,

----,....,.,,,

0011....,.,,,

0000....,.,,,

----....,.,,,

0110...,.,,,

0000...,.,,,

----...,.,,,

1100..,.,,,

1001..,.,,,

====..,.,,,

0110.,.,,,

0000.,.,,,

----.,.,,,

1100,.,,,

1001,.,,,

====,.,,,

0111.,,,

0000.,,,

----.,,,

1110,,,

1001,,,

====,,,

1011,,

1001,,

====,,

0101,

0000,

----

1011

1001

====

0010 = 02 = 2 = REMAINDER


In decimal this is "1559 divided by 9 is 173 with a remainder of 2".

Although the effect of each bit of the input message on the quotient
is not all that significant, the 4-bit remainder gets kicked about
quite a lot during the calculation, and if more bytes were added to
the message (dividend) it's value could change radically again very
quickly. This is why division works where addition doesn't.

In case you're wondering, using this 4-bit checksum the transmitted
message would look like this (in hexadecimal): 06172 (where the 0617
is the message and the 2 is the checksum). The receiver would divide
0617 by 9 and see whether the remainder was 2.

5
. Polynomical Arithmetic

While the division scheme described in the previous section is very
very similar to the checksumming schemes called CRC schemes, the CRC
schemes are in fact a bit weirder, and we need to delve into some
strange number systems to understand them.

The word you will hear all the time when dealing with CRC algorithms
is the word "polynomial". A given CRC algorithm will be said to be
using a particular polynomial, and CRC algorithms in general are said
to be operating using polynomial arithmetic. What does this mean?

Instead of the divisor, dividend (message), quotient, and remainder
(as described in the previous section) being viewed as positive
integers, they are viewed as polynomials with binary coefficients.
This is done by treating each number as a bit-string whose bits are
the coefficients of a polynomial. For example, the ordinary number 23
(decimal) is 17 (hex) and 10111 binary and so it corresponds to the
polynomial:

1*x^4 + 0*x^3 + 1*x^2 + 1*x^1 + 1*x^0


or, more simply:

x^4 + x^2 + x^1 + x^0


Using this technique, the message, and the divisor can be represented
as polynomials and we can do all our arithmetic just as before, except
that now it's all cluttered up with Xs. For example, suppose we wanted
to multiply 1101 by 1011. We can do this simply by multiplying the
polynomials:

(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)

= (x^6 + x^4 + x^3

+ x^5 + x^3 + x^2

+ x^3 + x^1 + x^0) = x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0


At this point, to get the right answer, we have to pretend that x is 2
and propagate binary carries from the 3*x^3 yielding:

x^7 + x^3 + x^2 + x^1 + x^0


It's just like ordinary arithmetic except that the base is abstracted
and brought into all the calculations explicitly instead of being
there implicitly. So what's the point?

The point is that IF we pretend that we DON'T know what x is, we CAN'T
perform the carries. We don't know that 3*x^3 is the same as x^4 + x^3
because we don't know that x is 2. In this true polynomial arithmetic
the relationship between all the coefficients is unknown and so the
coefficients of each power effectively become strongly typed;
coefficients of x^2 are effectively of a different type to
coefficients of x^3.

With the coefficients of each power nicely isolated, mathematicians
came up with all sorts of different kinds of polynomial arithmetics
simply by changing the rules about how coefficients work. Of these
schemes, one in particular is relevant here, and that is a polynomial
arithmetic where the coefficients are calculated MOD 2 and there is no
carry; all coefficients must be either 0 or 1 and no carries are
calculated. This is called "polynomial arithmetic mod 2". Thus,
returning to the earlier example:

(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)

= (x^6 + x^4 + x^3

+ x^5 + x^3 + x^2

+ x^3 + x^1 + x^0)

= x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0


Under the other arithmetic, the 3*x^3 term was propagated using the
carry mechanism using the knowledge that x=2. Under "polynomial
arithmetic mod 2", we don't know what x is, there are no carries, and
all coefficients have to be calculated mod 2. Thus, the result
becomes:

= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + x^0


As Knuth [Knuth81] says (p.400):

"The reader should note the similarity between polynomial
arithmetic and multiple-precision arithmetic (Section 4.3.1), where
the radix b is substituted for x. The chief difference is that the
coefficient u_k of x^k in polynomial arithmetic bears little or no
relation to its neighboring coefficients x^{k-1} [and x^{k+1}], so
the idea of "carrying" from one place to another is absent. In fact
polynomial arithmetic modulo b is essentially identical to multiple
precision arithmetic with radix b, except that all carries are
suppressed."

Thus polynomical arithmetic mod 2 is just binary arithmetic mod 2 with
no carries. While polynomials provide useful mathematical machinery in
more analytical approaches to CRC and error-correction algorithms, for
the purposes of exposition they provide no extra insight and some
encumbrance and have been discarded in the remainder of this document
in favour of direct manipulation of the arithmetical system with which
they are isomorphic: binary arithmetic with no carry.

Please check attribution section for Author of this document!
This article was written by filipg@repairfaq.org

[mailto]
. The most
recent version is available on the WWW server
http://www.repairfaq.org/filipg/
[Copyright]
[Disclaimer]
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: