您的位置:首页 > 其它

使用工作队列

2010-11-16 22:14 183 查看
我们先来看一下默认的events任务队列,然后再看看创建新的工作者线程。

1.创建推后的工作

首先要做的是实际创建一些需要推后完成的工作。可以通过DECLARE_WORK在编译时静态地创建该结构体:

在<workqueue.h>中

#define DECLARE_WORK(n, f) /

struct work_struct n = __WORK_INITIALIZER(n, f)

#define __WORK_INITIALIZER(n, f) { /

.data = WORK_DATA_INIT(0), /

.entry = { &(n).entry, &(n).entry }, /

.func = (f), /

}

也可以在运行时通过指针创建一个工作:

#define INIT_WORK(_work, _func) /

do { /

(_work)->data = (atomic_long_t) WORK_DATA_INIT(0); /

INIT_LIST_HEAD(&(_work)->entry); /

PREPARE_WORK((_work), (_func)); /

} while (0)

/*

* initialize a work item's function pointer

*/

#define PREPARE_WORK(_work, _func) /

do { /

(_work)->func = (_func); /

} while (0)

2.工作队列处理函数

工作队列对立函数的原型是:

void work_handler(void *data)

这个函数会由一个工作者线程执行,因此,函数会运行在进程上下文中。默认情况下,运行响应中断,并且不持有任何锁。如果需要,函数可以睡眠。需要注意的是,尽管操作处理函数运行在进程上下文中,但它不能访问用户空间,因为内核线程在用户空间没有相关的内存映射。通常在系统调用发生时,内核会代表用户空间的进程运行,此时它才能访问用户空间,也只有在此时它才会映射用户空间的内存。

3.对工作进行调度

要把给定工作的处理函数提交给默认的events工作线程,只须调用

schedule_work(&work);

/**

* schedule_work - put work task in global workqueue

* @work: job to be done

*

* This puts a job in the kernel-global workqueue.

*/

int fastcall schedule_work(struct work_struct *work)

{

return queue_work(keventd_wq, work);

}

/**

* queue_work - queue work on a workqueue

* @wq: workqueue to use

* @work: work to queue

*

* Returns 0 if @work was already on a queue, non-zero otherwise.

*

* We queue the work to the CPU it was submitted, but there is no

* guarantee that it will be processed by that CPU.

*/

int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)

{

int ret = 0, cpu = get_cpu();

if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {

if (unlikely(is_single_threaded(wq)))

cpu = singlethread_cpu;

BUG_ON(!list_empty(&work->entry));

__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);

ret = 1;

}

put_cpu();

return ret;

}

/* Preempt must be disabled. */

static void __queue_work(struct cpu_workqueue_struct *cwq,

struct work_struct *work)

{

unsigned long flags;

spin_lock_irqsave(&cwq->lock, flags);

set_wq_data(work, cwq);

list_add_tail(&work->entry, &cwq->worklist);

cwq->insert_sequence++;

wake_up(&cwq->more_work);

spin_unlock_irqrestore(&cwq->lock, flags);

}

work马上就会被调度,一旦其所在的处理器上的工作者线程被唤醒,它就会被执行。如不希望工作马上被执行,延迟一段时间之后再执行,可以调度它在指定的时间执行:

schedule_delayed_work(&work,delay);

/**

* schedule_delayed_work - put work task in global workqueue after delay

* @dwork: job to be done

* @delay: number of jiffies to wait or 0 for immediate execution

*

* After waiting for a given time this puts a job in the kernel-global

* workqueue.

*/

int fastcall schedule_delayed_work(struct delayed_work *dwork,

unsigned long delay)

{

timer_stats_timer_set_start_info(&dwork->timer);

return queue_delayed_work(keventd_wq, dwork, delay);

}

/**

* queue_delayed_work - queue work on a workqueue after delay

* @wq: workqueue to use

* @dwork: delayable work to queue

* @delay: number of jiffies to wait before queueing

*

* Returns 0 if @work was already on a queue, non-zero otherwise.

*/

int fastcall queue_delayed_work(struct workqueue_struct *wq,

struct delayed_work *dwork, unsigned long delay)

{

int ret = 0;

struct timer_list *timer = &dwork->timer;

struct work_struct *work = &dwork->work;

timer_stats_timer_set_start_info(timer);

if (delay == 0)

return queue_work(wq, work);

if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {

BUG_ON(timer_pending(timer));

BUG_ON(!list_empty(&work->entry));

/* This stores wq for the moment, for the timer_fn */

set_wq_data(work, wq);

timer->expires = jiffies + delay;

timer->data = (unsigned long)dwork;

timer->function = delayed_work_timer_fn;

add_timer(timer);

ret = 1;

}

return ret;

}

struct delayed_work {

struct work_struct work;

struct timer_list timer;

};

4.刷新操作

排入队列的工作会在工作者线程下一次被唤醒的时候执行。有时,在继续下一步工作之前,你必须保证一些操作已经执行完毕了。这一点对模块来说很重要,在卸载之前,它就有可能需要调用下面的函数;而在内核的其他部分,为了防止竞争条件的出现,也可能需要确保不在有待处理的工作。

出于以上目的,内核准备了一个用于刷新指定工作队列的函数:

void flush_scheduled_work(void);

void flush_scheduled_work(void)

{

flush_workqueue(keventd_wq);

}

/**

* flush_workqueue - ensure that any scheduled work has run to completion.

* @wq: workqueue to flush

*

* Forces execution of the workqueue and blocks until its completion.

* This is typically used in driver shutdown handlers.

*

* This function will sample each workqueue's current insert_sequence number and

* will sleep until the head sequence is greater than or equal to that. This

* means that we sleep until all works which were queued on entry have been

* handled, but we are not livelocked by new incoming ones.

*

* This function used to run the workqueues itself. Now we just wait for the

* helper threads to do it.

*/

void fastcall flush_workqueue(struct workqueue_struct *wq)

{

might_sleep();

if (is_single_threaded(wq)) {

/* Always use first cpu's area. */

flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));

} else {

int cpu;

mutex_lock(&workqueue_mutex);

for_each_online_cpu(cpu)

flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));

mutex_unlock(&workqueue_mutex);

}

}

函数会一直等待,直到队列中所有对象都被执行以后才返回。在等待所有待处理的工作执行的时候,该函数会进入休眠状态,所以只能在进程上下文中使用它。

注意,该函数并不取消任何延迟执行的工作。就是说,任何通过schedule_delayed_work()调度的工作,如果其延迟时间未结束,它并不会因为调用flush_scheduled_work()而被刷新掉。

取消延迟执行的工作应该调用:

int cancle_delayed_work(sruct work_struc work);

这个函数可以取消任何与work_struct相关的挂起工作。

在<workqueue.h>中

/*

* Kill off a pending schedule_delayed_work(). Note that the work callback

* function may still be running on return from cancel_delayed_work(). Run

* flush_scheduled_work() to wait on it.

*/

static inline int cancel_delayed_work(struct delayed_work *work)

{

int ret;

ret = del_timer_sync(&work->timer);

if (ret)

work_release(&work->work);

return ret;

}

/**

* work_release - Release a work item under execution

* @work: The work item to release

*

* This is used to release a work item that has been initialised with automatic

* release mode disabled (WORK_STRUCT_NOAUTOREL is set). This gives the work

* function the opportunity to grab auxiliary data from the container of the

* work_struct before clearing the pending bit as the work_struct may be

* subject to deallocation the moment the pending bit is cleared.

*

* In such a case, this should be called in the work function after it has

* fetched any data it may require from the containter of the work_struct.

* After this function has been called, the work_struct may be scheduled for

* further execution or it may be deallocated unless other precautions are

* taken.

*

* This should also be used to release a delayed work item.

*/

#define work_release(work) /

clear_bit(WORK_STRUCT_PENDING, work_data_bits(work))

5.创建新的工作队列

如果默认的队列不能满足需要,可以创建一个新的工作对列和与之相应的工作者线程。

创建一个新的任务队列和与之相关的工作者线程,只须调用一个简单的函数:

struct workqueue_struct *create_workqueue(const char *name);

在<workqueue.h>中

#define create_workqueue(name) __create_workqueue((name), 0, 0)

在<workqueue.c>中

struct workqueue_struct *__create_workqueue(const char *name,

int singlethread, int freezeable)

{

int cpu, destroy = 0;

struct workqueue_struct *wq;

struct task_struct *p;

wq = kzalloc(sizeof(*wq), GFP_KERNEL);

if (!wq)

return NULL;

wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);

if (!wq->cpu_wq) {

kfree(wq);

return NULL;

}

wq->name = name;

mutex_lock(&workqueue_mutex);

if (singlethread) {

INIT_LIST_HEAD(&wq->list);

p = create_workqueue_thread(wq, singlethread_cpu, freezeable);

if (!p)

destroy = 1;

else

wake_up_process(p);

} else {

list_add(&wq->list, &workqueues);

for_each_online_cpu(cpu) {

p = create_workqueue_thread(wq, cpu, freezeable);

if (p) {

kthread_bind(p, cpu);

wake_up_process(p);

} else

destroy = 1;

}

}

mutex_unlock(&workqueue_mutex);

/*

* Was there any error during startup? If yes then clean up:

*/

if (destroy) {

destroy_workqueue(wq);

wq = NULL;

}

return wq;

}

这个函数会创建所有的工作者线程(系统中的每个处理器都有一个),并且做好所有开始处理工作之前的准备工作。

创建一个工作的时候无须考虑工作队列的类型。可以使用下列函数对给定工作而不是默认的event队列进行操作。

int queue_work(struct workqueue_struct *wq, struct work_struct *work);

int queue_delayed_work(struct workqueue_struct *wq, struct work_struct *work, unsigned long delay);

flush_workqueue(struct workqueue_struct *wq);

/**

* queue_work - queue work on a workqueue

* @wq: workqueue to use

* @work: work to queue

*

* Returns 0 if @work was already on a queue, non-zero otherwise.

*

* We queue the work to the CPU it was submitted, but there is no

* guarantee that it will be processed by that CPU.

*/

int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)

{

int ret = 0, cpu = get_cpu();

if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {

if (unlikely(is_single_threaded(wq)))

cpu = singlethread_cpu;

BUG_ON(!list_empty(&work->entry));

__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);

ret = 1;

}

put_cpu();

return ret;

}

/**

* queue_delayed_work - queue work on a workqueue after delay

* @wq: workqueue to use

* @dwork: delayable work to queue

* @delay: number of jiffies to wait before queueing

*

* Returns 0 if @work was already on a queue, non-zero otherwise.

*/

int fastcall queue_delayed_work(struct workqueue_struct *wq,

struct delayed_work *dwork, unsigned long delay)

{

int ret = 0;

struct timer_list *timer = &dwork->timer;

struct work_struct *work = &dwork->work;

timer_stats_timer_set_start_info(timer);

if (delay == 0)

return queue_work(wq, work);

if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {

BUG_ON(timer_pending(timer));

BUG_ON(!list_empty(&work->entry));

/* This stores wq for the moment, for the timer_fn */

set_wq_data(work, wq);

timer->expires = jiffies + delay;

timer->data = (unsigned long)dwork;

timer->function = delayed_work_timer_fn;

add_timer(timer);

ret = 1;

}

return ret;

}

/**

* flush_workqueue - ensure that any scheduled work has run to completion.

* @wq: workqueue to flush

*

* Forces execution of the workqueue and blocks until its completion.

* This is typically used in driver shutdown handlers.

*

* This function will sample each workqueue's current insert_sequence number and

* will sleep until the head sequence is greater than or equal to that. This

* means that we sleep until all works which were queued on entry have been

* handled, but we are not livelocked by new incoming ones.

*

* This function used to run the workqueues itself. Now we just wait for the

* helper threads to do it.

*/

void fastcall flush_workqueue(struct workqueue_struct *wq)

{

might_sleep();

if (is_single_threaded(wq)) {

/* Always use first cpu's area. */

flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));

} else {

int cpu;

mutex_lock(&workqueue_mutex);

for_each_online_cpu(cpu)

flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));

mutex_unlock(&workqueue_mutex);

}

}

static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)

{

if (cwq->thread == current) {

/*

* Probably keventd trying to flush its own queue. So simply run

* it by hand rather than deadlocking.

*/

run_workqueue(cwq);

} else {

DEFINE_WAIT(wait);

long sequence_needed;

spin_lock_irq(&cwq->lock);

sequence_needed = cwq->insert_sequence;

while (sequence_needed - cwq->remove_sequence > 0) {

prepare_to_wait(&cwq->work_done, &wait,

TASK_UNINTERRUPTIBLE);

spin_unlock_irq(&cwq->lock);

schedule();

spin_lock_irq(&cwq->lock);

}

finish_wait(&cwq->work_done, &wait);

spin_unlock_irq(&cwq->lock);

}

}

static void run_workqueue(struct cpu_workqueue_struct *cwq)

{

unsigned long flags;

/*

* Keep taking off work from the queue until

* done.

*/

spin_lock_irqsave(&cwq->lock, flags);

cwq->run_depth++;

if (cwq->run_depth > 3) {

/* morton gets to eat his hat */

printk("%s: recursion depth exceeded: %d/n",

__FUNCTION__, cwq->run_depth);

dump_stack();

}

while (!list_empty(&cwq->worklist)) {

struct work_struct *work = list_entry(cwq->worklist.next,

struct work_struct, entry);

work_func_t f = work->func;

list_del_init(cwq->worklist.next);

spin_unlock_irqrestore(&cwq->lock, flags);

BUG_ON(get_wq_data(work) != cwq);

if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))

work_release(work);

f(work);

if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {

printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "

"%s/0x%08x/%d/n",

current->comm, preempt_count(),

current->pid);

printk(KERN_ERR " last function: ");

print_symbol("%s/n", (unsigned long)f);

debug_show_held_locks(current);

dump_stack();

}

spin_lock_irqsave(&cwq->lock, flags);

cwq->remove_sequence++;

wake_up(&cwq->work_done);

}

cwq->run_depth--;

spin_unlock_irqrestore(&cwq->lock, flags);

}

呵呵,又把代码贴完了:)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: