您的位置:首页 > 理论基础 > 计算机网络

Linux网络协议栈分析——从设备驱动到链路层

2010-10-23 22:47 281 查看
在网上看到高手总结出来的,省的自己花时间再研究,放到此处以便学习。
原文:http://ericxiao.cublog.cn/

成都的天气好像越来越好了,前几天还穿着穿着外套直打哆嗦,到今天已经“拨开阴云见太阳”,暖洋洋的,心情也暖洋洋的。暖和的正好想睡觉。打个呵欠,把网络设备管理这部份总结下吧。
Linux素以优秀的网络管理能力而著称,linux为何具有这么高的效率?我们从网络设备的管理说起。
Linux为何要对网络设备单独管理呢?这是因为。协议栈很多地方都会涉及到网络设备。小至IP地址的设置。大至IP路由的更新。都离不开高效的网络设备管理。将网络设备单独管理可以提高效率!
每个网络设备,在linux中都会对应一个数据结构,net_device。 就从这个结构说起
Linux 2。6。21中,对net_device定义如下:
struct net_device
{
//设备的名称,例如常见的“eth0”等
char name[IFNAMSIZ];
//共享内存的起始,结束地址
unsigned long mem_end; /* shared mem end */
unsigned long mem_start; /* shared mem start */
//网络设备的I/O基地址
unsigned long base_addr; /* device I/O address */
//被赋予的中断号
unsigned int irq; /* device IRQ number */
//在多端口设备上使用哪一个端口
unsigned char if_port; /* Selectable AUI, TP,..*/
//为设备分配的DMA通道
unsigned char dma; /* DMA channel */
//设备的状态
unsigned long state;
// 下一个net_device
struct net_device *next;
//初始化函数。
int (*init)(struct net_device *dev);
struct net_device *next_sched;

/* Interface index. Unique device identifier */
//设备在内核中对应的序号
int ifindex;
int iflink;

//获得接口状态的函数指针
struct net_device_stats* (*get_stats)(struct net_device *dev);
struct iw_statistics* (*get_wireless_stats)(struct net_device *dev);

struct iw_handler_def * wireless_handlers;
struct ethtool_ops *ethtool_ops;
//传输状态。检查传输是否被锁住
unsigned long trans_start; /* Time (in jiffies) of last Tx */
//最使使用的时间
unsigned long last_rx; /* Time of last Rx */
//接口标志
unsigned short flags; /* interface flags (a la BSD) */
unsigned short gflags;
unsigned short priv_flags; /* Like 'flags' but invisible to userspace. */
unsigned short unused_alignment_fixer; /* Because we need priv_flags,
* and we want to be 32-bit aligned.
*/

unsigned mtu; /* interface MTU value */
unsigned short type; /* interface hardware type */
unsigned short hard_header_len; /* hardware hdr length */
void *priv; /* pointer to private data */

struct net_device *master; /* Pointer to master device of a group,
* which this device is member of.
*/

/* Interface address info. */
unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
unsigned char dev_addr[MAX_ADDR_LEN]; /* hw address */
unsigned char addr_len; /* hardware address length */

struct dev_mc_list *mc_list; /* Multicast mac addresses */
int mc_count; /* Number of installed mcasts */
int promiscuity;
int allmulti;

int watchdog_timeo;
struct timer_list watchdog_timer;

/* Protocol specific pointers */

void *atalk_ptr; /* AppleTalk link */
void *ip_ptr; /* IPv4 specific data */
void *dn_ptr; /* DECnet specific data */
void *ip6_ptr; /* IPv6 specific data */
void *ec_ptr; /* Econet specific data */
void *ax25_ptr; /* AX.25 specific data */

struct list_head poll_list; /* Link to poll list */
int quota;
int weight;

struct Qdisc *qdisc;
struct Qdisc *qdisc_sleeping;
struct Qdisc *qdisc_ingress;
struct list_head qdisc_list;
unsigned long tx_queue_len; /* Max frames per queue allowed */

/* ingress path synchronizer */
spinlock_t ingress_lock;
/* hard_start_xmit synchronizer */
spinlock_t xmit_lock;
/* cpu id of processor entered to hard_start_xmit or -1,
if nobody entered there.
*/
int xmit_lock_owner;
/* device queue lock */
spinlock_t queue_lock;
/* Number of references to this device */
atomic_t refcnt;
/* delayed register/unregister */
struct list_head todo_list;
/* device name hash chain */
struct hlist_node name_hlist;
/* device index hash chain */
struct hlist_node index_hlist;

/* register/unregister state machine */
enum { NETREG_UNINITIALIZED=0,
NETREG_REGISTERING, /* called register_netdevice */
NETREG_REGISTERED, /* completed register todo */
NETREG_UNREGISTERING, /* called unregister_netdevice */
NETREG_UNREGISTERED, /* completed unregister todo */
NETREG_RELEASED, /* called free_netdev */
} reg_state;

/* Net device features */
int features;
#define NETIF_F_SG 1 /* Scatter/gather IO. */
#define NETIF_F_IP_CSUM 2 /* Can checksum only TCP/UDP over IPv4. */
#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
#define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
#define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
#define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
#define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
#define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
#define NETIF_F_TSO 2048 /* Can offload TCP/IP segmentation */
#define NETIF_F_LLTX 4096 /* LockLess TX */

/* Called after device is detached from network. */
void (*uninit)(struct net_device *dev);
/* Called after last user reference disappears. */
void (*destructor)(struct net_device *dev);

/* Pointers to interface service routines. */
//打开函数指针
int (*open)(struct net_device *dev);
//设备停用时调用此函数
int (*stop)(struct net_device *dev);
//初始化数据包的传输
int (*hard_start_xmit) (struct sk_buff *skb,
struct net_device *dev);
#define HAVE_NETDEV_POLL
//轮询函数
int (*poll) (struct net_device *dev, int *quota);
//建立硬件头信息
int (*hard_header) (struct sk_buff *skb,
struct net_device *dev,
unsigned short type,
void *daddr,
void *saddr,
unsigned len);
//ARP解析之后,重构头部
int (*rebuild_header)(struct sk_buff *skb);
#define HAVE_MULTICAST
//多播支持函数
void (*set_multicast_list)(struct net_device *dev);
#define HAVE_SET_MAC_ADDR
int (*set_mac_address)(struct net_device *dev,
void *addr);
#define HAVE_PRIVATE_IOCTL
int (*do_ioctl)(struct net_device *dev,
struct ifreq *ifr, int cmd);
#define HAVE_SET_CONFIG
int (*set_config)(struct net_device *dev,
struct ifmap *map);
#define HAVE_HEADER_CACHE
int (*hard_header_cache)(struct neighbour *neigh,
struct hh_cache *hh);
void (*header_cache_update)(struct hh_cache *hh,
struct net_device *dev,
unsigned char * haddr);
#define HAVE_CHANGE_MTU
int (*change_mtu)(struct net_device *dev, int new_mtu);

#define HAVE_TX_TIMEOUT
void (*tx_timeout) (struct net_device *dev);

void (*vlan_rx_register)(struct net_device *dev,
struct vlan_group *grp);
void (*vlan_rx_add_vid)(struct net_device *dev,
unsigned short vid);
void (*vlan_rx_kill_vid)(struct net_device *dev,
unsigned short vid);

int (*hard_header_parse)(struct sk_buff *skb,
unsigned char *haddr);
int (*neigh_setup)(struct net_device *dev, struct neigh_parms *);
int (*accept_fastpath)(struct net_device *, struct dst_entry*);
#ifdef CONFIG_NETPOLL
int netpoll_rx;
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
void (*poll_controller)(struct net_device *dev);
#endif

/* bridge stuff */
//对应的网桥端口(以后分析)
struct net_bridge_port *br_port;

#ifdef CONFIG_NET_DIVERT
/* this will get initialized at each interface type init routine */
struct divert_blk *divert;
#endif /* CONFIG_NET_DIVERT */

/* class/net/name entry */
struct class_device class_dev;
/* how much padding had been added by alloc_netdev() */
int padded;
}
晕,太多的成员。太庞大了。不要紧,等到要使用到相应成员的时候再来解释好了。

注意到这么庞大的结构中,有个成员叫: struct net_device *next,呵呵,很熟悉吧,就是用它来建立网络设备的链表。

每一个网络设备启动的时候,都会调用register_netdev() (drivers/net/net_init.c)
跟踪这个函数:
int register_netdev(struct net_device *dev)
{
int err;

rtnl_lock();

/*
* If the name is a format string the caller wants us to
* do a name allocation
*/

if (strchr(dev->name, '%'))
{
err = dev_alloc_name(dev, dev->name);
if (err < 0)
goto out;
}

/*
* Back compatibility hook. Kill this one in 2.5
*/

if (dev->name[0]==0 || dev->name[0]==' ')
{
err = dev_alloc_name(dev, "eth%d");
if (err < 0)
goto out;
}

err = register_netdevice(dev);

out:
rtnl_unlock();
return err;
}

跟踪至: register_netdevice(struct net_device *dev) (net/core/dev.c)
int register_netdevice(struct net_device *dev)
{
struct hlist_head *head;
struct hlist_node *p;
int ret;

BUG_ON(dev_boot_phase);
ASSERT_RTNL();

/* When net_device's are persistent, this will be fatal. */
BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);

spin_lock_init(&dev->queue_lock);
spin_lock_init(&dev->xmit_lock);
dev->xmit_lock_owner = -1;
#ifdef CONFIG_NET_CLS_ACT
spin_lock_init(&dev->ingress_lock);
#endif

ret = alloc_divert_blk(dev);
if (ret)
goto out;

dev->iflink = -1;

/* Init, if this function is available */
//如果dev -> init 被赋值,那么调用此函数
if (dev->init) {
ret = dev->init(dev);
if (ret) {
if (ret > 0)
ret = -EIO;
goto out_err;
}
}

//判断name 是否合法
if (!dev_valid_name(dev->name)) {
ret = -EINVAL;
goto out_err;
}
//为此设备分配一个index
dev->ifindex = dev_new_index();
if (dev->iflink == -1)
dev->iflink = dev->ifindex;

/* Check for existence of name */

//所有网络设备,以名字作为哈希主键存在dev_name_head中,该变量是一个哈希数组
//找到该名字对应的链表
//如果内核中已经含有此名字的网络设备,出错退出
head = dev_name_hash(dev->name);
hlist_for_each(p, head) {
struct net_device *d
= hlist_entry(p, struct net_device, name_hlist);
if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
ret = -EEXIST;
goto out_err;
}
}

/* Fix illegal SG+CSUM combinations. */
if ((dev->features & NETIF_F_SG) &&
!(dev->features & (NETIF_F_IP_CSUM |
NETIF_F_NO_CSUM |
NETIF_F_HW_CSUM))) {
printk("%s: Dropping NETIF_F_SG since no checksum feature./n",
dev->name);
dev->features &= ~NETIF_F_SG;
}

/*
* nil rebuild_header routine,
* that should be never called and used as just bug trap.
*/

//为rebuild_header赋默认值
if (!dev->rebuild_header)
dev->rebuild_header = default_rebuild_header;

/*
* Default initial state at registry is that the
* device is present.
*/

set_bit(__LINK_STATE_PRESENT, &dev->state);

dev->next = NULL;
dev_init_scheduler(dev);
write_lock_bh(&dev_base_lock);
//初始化的时候,有struct net_device **dev_tail = &dev_base;
//这段代码的意思实际就是:把dev加入dev_base为首结点队链表的尾部
*dev_tail = dev;
dev_tail = &dev->next;
//把此结点加入到以名字为哈希主键的链表数组dev_name_head中
hlist_add_head(&dev->name_hlist, head);
//把此结点加到以序号为主键的链表数组dev_index_head中
hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
dev_hold(dev);
dev->reg_state = NETREG_REGISTERING;
write_unlock_bh(&dev_base_lock);

/* Notify protocols, that a new device appeared. */
//在通知链表上发送事件
notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);

/* Finish registration after unlock */
net_set_todo(dev);
ret = 0;

out:
return ret;
out_err:
free_divert_blk(dev);
goto out;
}

从此可以看出。新加入一个设备时,会插入三个位置:以名字为哈希值组织的dev_name_head ,以序号为主链的哈希数组dev_index_head.还有dev_base.它为快速查找网络设备提供了基础。事实上。在内核中,经常要根据index找到dev. 或者根据name找到dev.我们遇到的时候再分析

到现在,我们可以在内核中顺藤摸瓜的找到每一个网络设备了。
还有很重要的。设备更改了配置,要怎么通知跟他相关的子系统呢?例如,网卡更新了IP,如何使路由得到更新?
接着往下看:
注意到上面注册代码中所调用的一个函数notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev).
该函数的作用是,在通知链表上netdev_chain上发送NETDEV_REGISTER消息,所有在与该通知链表关联的子系统都可以收到此消息。以此,可以快速的更新整个系统的配置消息。
以路由子系统为例,来讲述该过程:
在IPV4子系统加载的时候,加调用ip_init(),接着调用fib_init(),然后再调用ip_fib_init()
跟踪一下此函数:
void __init ip_fib_init(void)
{
#ifndef CONFIG_IP_MULTIPLE_TABLES
ip_fib_local_table = fib_hash_init(RT_TABLE_LOCAL);
ip_fib_main_table = fib_hash_init(RT_TABLE_MAIN);
#else
fib_rules_init();
#endif

register_netdevice_notifier(&fib_netdev_notifier);
register_inetaddr_notifier(&fib_inetaddr_notifier);
}
register_netdevice_notifier是做什么的呢?往下跟踪:
int register_netdevice_notifier(struct notifier_block *nb)
{
struct net_device *dev;
int err;

rtnl_lock();
//注册通知链
err = notifier_chain_register(&netdev_chain, nb);
if (!err) {
for (dev = dev_base; dev; dev = dev->next) {
nb->notifier_call(nb, NETDEV_REGISTER, dev);

if (dev->flags & IFF_UP)
nb->notifier_call(nb, NETDEV_UP, dev);
}
}
rtnl_unlock();
return err;
}
呵呵,它在netdev_chain上注册了通知链,当此链上有事件发生时,会调用fib_netdev_notifiers中的相关信息处理,看一下fib_netdev_notifier的信息:

struct notifier_block fib_netdev_notifier = {
.notifier_call =fib_netdev_event,
};

OK,现在越来越具体了,如果netdev_chain有事件,会调用fib_netdev_event处理。继续跟踪:
static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct in_device *in_dev = __in_dev_get(dev);
//设备注销
if (event == NETDEV_UNREGISTER) {
fib_disable_ip(dev, 2);
return NOTIFY_DONE;
}

if (!in_dev)
return NOTIFY_DONE;

switch (event) {
//设备UP
case NETDEV_UP:
for_ifa(in_dev) {
fib_add_ifaddr(ifa);
} endfor_ifa(in_dev);
#ifdef CONFIG_IP_ROUTE_MULTIPATH
fib_sync_up(dev);
#endif
rt_cache_flush(-1);
break;
//设备DOWN
case NETDEV_DOWN:
fib_disable_ip(dev, 0);
break;
//设备参数改变
case NETDEV_CHANGEMTU:
case NETDEV_CHANGE:
rt_cache_flush(0);
break;
}
return NOTIFY_DONE;
}

路由部份的代码将在后续的笔记中给出。至此,整个网络设备的架构非常的清晰了!

它主要完成:对网应对应的net net_device赋初值。并向内核调用register_netdev完成网络设备的注册,网络设备注册我们在上一节中已经说过,这里不再赘述。
看一下net_device中几个关键的函数:
//在设备将打开的时候,调用此函数
netdev->open = e100_open;
//在设备停用的时候调用此函数
netdev->stop = e100_close;
//设备发送数据的时候调用此函数
netdev->hard_start_xmit = e100_xmit_frame;
到此时,网卡的初始化工作已经完成了。之后就可以操作网卡了。
那网卡应该怎么使用呢?必须首先唤起网卡,即使之UP,例如 ifconfig eth0 up
此时,内核会根据接口名字“eth0”找到对应的net_device.然后调用 net_device-> open.即:e100_open。
分析如下:
static int e100_open(struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
int err = 0;

//网卡正在UP,关闭载波信号
netif_carrier_off(netdev);
if((err = e100_up(nic)))
DPRINTK(IFUP, ERR, "Cannot open interface, aborting./n");
return err;
}
我们关心的是e100_up。跟踪如下:
static int e100_up(struct nic *nic)
{
int err;

//分配收包队列
if((err = e100_rx_alloc_list(nic)))
return err;
//分配控制队列
if((err = e100_alloc_cbs(nic)))
goto err_rx_clean_list;
//硬件初始化
if((err = e100_hw_init(nic)))
goto err_clean_cbs;
//多播
e100_set_multicast_list(nic->netdev);
//开始接收数据
e100_start_receiver(nic);
mod_timer(&nic->watchdog, jiffies);
//注册中断例程
if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
nic->netdev->name, nic->netdev)))
goto err_no_irq;
//启用中断
e100_enable_irq(nic);
netif_wake_queue(nic->netdev);
return 0;

err_no_irq:
del_timer_sync(&nic->watchdog);
err_clean_cbs:
e100_clean_cbs(nic);
err_rx_clean_list:
e100_rx_clean_list(nic);
return err;
}
在此函数中,我们可以看到,它主要完成了:接立接收环形DMA缓冲区。注册了中断处理函数
关于环形DMA缓冲区接立是由e100_rx_alloc_list(nic)完成的
static int e100_rx_alloc_list(struct nic *nic)
{
struct rx *rx;
// nic->params.rfds.count,接收缓存的总个数
unsigned int i, count = nic->params.rfds.count;
//rx_to_use:正在存在数据的位置
//rx_to_clean:数据的初始为止。所以。数据的有限位置是从rx_to_use到rx_to_use
nic->rx_to_use = nic->rx_to_clean = NULL;
if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
return -ENOMEM;
memset(nic->rxs, 0, sizeof(struct rx) * count);
//遍历并建立循环链表
for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
if(e100_rx_alloc_skb(nic, rx)) {
e100_rx_clean_list(nic);
return -ENOMEM;
}
}
//初始化起如位置为nic->rxs
nic->rx_to_use = nic->rx_to_clean = nic->rxs;

return 0;
}
为设备建立DMA映射的主函数为e100_rx_alloc_skb().分析如下:
static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
{
unsigned int rx_offset = 2; /* u32 align protocol headers */
if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + rx_offset)))
return -ENOMEM;
/* Align, init, and map the RFD. */
rx->skb->dev = nic->netdev;
//在数据存储区之前空出offset空间
skb_reserve(rx->skb, rx_offset);
//skb->data前部置RFD
memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
//DMA内存映射,映射至skb->data
rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);

/* Link the RFD to end of RFA by linking previous RFD to
l this one, and clearing EL bit of previous. */
//初始化前一个skb中的控制信息
if(rx->prev->skb) {
struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
put_unaligned(cpu_to_le32(rx->dma_addr),
(u32 *)&prev_rfd->link);
wmb();
prev_rfd->command &= ~cpu_to_le16(cb_el);
pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
sizeof(struct rfd), PCI_DMA_TODEVICE);
}

return 0;
}
在这个函数里,主要完成了:DMA环形链表的建立。在这里涉及到了一个重要的数据结构sk_buff.稍后再给出它的结构分析。在这里我们只要知道在skb->data里储存的是接收数据就OK了。值得一提的是,Intel 100M 网卡对接收数据的处理,跟平时遇到的网卡不一样,接收数据时会由接收控制RU写入接收信息,由此判断接收是否完全等信息。也就是我们在代码里面看到的rfd.所以,在skb->data对应的就是rfd+网络传过来的数据.
到这里,接收准备工作已经完成了。

四:数据接收
为了了解网卡数据接收的过程。有必要先讨论DMA的具体过程。
DMA传输数据可以分为以下几个步骤:
首先:CPU向DMA送命令,如DMA方式,主存地址,传送的字数等,之后CPU执行原来的程序.
然后DMA 控制在 I/O 设备与主存间交换数据。接收数据完后, 向CPU发DMA请求,取得总线控制权,进行数据传送,修改卡上主存地址,修改字数计数器内且检查其值是否为零,不为零则继续传送,若已为零,则向 CPU发中断请求.。
也就是说,网卡收到包时,将它放入当前skb->data中。再来一个包时。DMA会修改卡上主存地址,转到skb->next,将数据放入其中。这也就是,一个skb->data存储一个数据包的原因。
好了,现在就可以来看具体的代码实现了。
当网络数据到络,网卡将其放到DMA内存,然后DMA向CPU报告中断,CPU根据中断向量,找到中断处理例程,也就是我们前面注册的e100_intr()进行处理。
static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *netdev = dev_id;
struct nic *nic = netdev_priv(netdev);
u8 stat_ack = readb(&nic->csr->scb.stat_ack);

DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X/n", stat_ack);

if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
stat_ack == stat_ack_not_present) /* Hardware is ejected */
return IRQ_NONE;

/* Ack interrupt(s) */
//发送中断ACK。Cpu向设备发送ACK。表示此中断已经处理
writeb(stat_ack, &nic->csr->scb.stat_ack);

/* We hit Receive No Resource (RNR); restart RU after cleaning */
if(stat_ack & stat_ack_rnr)
nic->ru_running = 0;
//禁用中断
e100_disable_irq(nic);
//CPU开始调度此设备。转而会运行netdev->poll
netif_rx_schedule(netdev);

return IRQ_HANDLED;
}
netif_rx_schedule(netdev)后,cpu开始调度此设备,轮询设备是否有数据要处理。转后调用netdev->poll函数,即:e100_poll()
static int e100_poll(struct net_device *netdev, int *budget)
{
struct nic *nic = netdev_priv(netdev);
unsigned int work_to_do = min(netdev->quota, *budget);
unsigned int work_done = 0;
int tx_cleaned;
//开始对nic中,DMA数据的处理
e100_rx_clean(nic, &work_done, work_to_do);
tx_cleaned = e100_tx_clean(nic);

/* If no Rx and Tx cleanup work was done, exit polling mode. */
if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
netif_rx_complete(netdev);
e100_enable_irq(nic);
return 0;
}

*budget -= work_done;
netdev->quota -= work_done;

return 1;
}
跟踪进e100_rx_clean():
static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
unsigned int work_to_do)
{
struct rx *rx;

/* Indicate newly arrived packets */
//遍历环形DMA中的数据,调用e100_rx_indicate()进行处理
for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
if(e100_rx_indicate(nic, rx, work_done, work_to_do))
break; /* No more to clean */
}

/* Alloc new skbs to refill list */
for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
if(unlikely(e100_rx_alloc_skb(nic, rx)))
break; /* Better luck next time (see watchdog) */
}

e100_start_receiver(nic);
}
在这里,它会遍历环形DMA中的数据,即从nic->rx_to_clean开始的数据,直至数据全部处理完
进入处理函数:e100_rx_indicate()
static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
unsigned int *work_done, unsigned int work_to_do)
{
struct sk_buff *skb = rx->skb;
//从这里取得rfd.其中包括了一些接收信息,但不是链路传过来的有效数据
struct rfd *rfd = (struct rfd *)skb->data;
u16 rfd_status, actual_size;

if(unlikely(work_done && *work_done >= work_to_do))
return -EAGAIN;
//同步DMA缓存
pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
sizeof(struct rfd), PCI_DMA_FROMDEVICE);
//取得接收状态
rfd_status = le16_to_cpu(rfd->status);
DPRINTK(RX_STATUS, DEBUG, "status=0x%04X/n", rfd_status);
/* If data isn't ready, nothing to indicate */
//没有接收完全,返回
if(unlikely(!(rfd_status & cb_complete)))
return -EAGAIN;
//取得接收数据的长度
actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
actual_size = RFD_BUF_LEN - sizeof(struct rfd);

//取消DMA缓存映射
pci_unmap_single(nic->pdev, rx->dma_addr,
RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
//由于RFD不是链路传入的数据,清除
skb_reserve(skb, sizeof(struct rfd));
//调整skb中的tail指针,与len更新
skb_put(skb, actual_size);
//取得链路层协议
skb->protocol = eth_type_trans(skb, nic->netdev);
//接收失败
if(unlikely(!(rfd_status & cb_ok))) {
/* Don't indicate if hardware indicates errors */
nic->net_stats.rx_dropped++;
dev_kfree_skb_any(skb);
}
//数据超长。Drop it
else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
/* Don't indicate oversized frames */
nic->rx_over_length_errors++;
nic->net_stats.rx_dropped++;
dev_kfree_skb_any(skb);
} else {
//成功的接收了,更新统计计数
nic->net_stats.rx_packets++;
nic->net_stats.rx_bytes += actual_size;
nic->netdev->last_rx = jiffies;
//送至上次协议处理
netif_receive_skb(skb);
if(work_done)
(*work_done)++;
}

rx->skb = NULL;

return 0;
}
上面代码中要去判断接收是否完全,为什么要去判断呢?根据DMA机制,是网卡把数据放入DMA之后。DMA再向CPU发中断的嘛?呵呵。在这里进行接收完全判断是因为:
1:由其它原因造成的中断
2:在处理中断时候。数据又到达了。网卡依然会把它放至下一个skb。而在代码处理中是遍历处理的,也就是说处理下一个skb的时候,可能网卡正在传数据。
好了,运行到netif_receive_skb()之后,数据包被送到上层。关于后续的处理流程,以后会有专题讨论

五:数据的发送

在进入到发送函数之前,我们先来看e100_up()->e100_alloc_cbs函数:
static int e100_alloc_cbs(struct nic *nic)
{
struct cb *cb;
unsigned int i, count = nic->params.cbs.count;

nic->cuc_cmd = cuc_start;
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
nic->cbs_avail = 0;

//线性DMA映射,这里返回的是虚拟地址,供CPU使用的
nic->cbs = pci_alloc_consistent(nic->pdev,
sizeof(struct cb) * count, &nic->cbs_dma_addr);
if(!nic->cbs)
return -ENOMEM;
//建立环形的发送缓冲区
for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;

cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
cb->link = cpu_to_le32(nic->cbs_dma_addr +
((i+1) % count) * sizeof(struct cb));
cb->skb = NULL;
}
//初始化各指针,使其指向缓冲初始位置
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
nic->cbs_avail = count;

return 0;
}
在这一段代码里,完成了发送的准备工作,建立了发送环形缓存。在发送数剧时,只要把数据送入缓存即可
数据最终会调用dev-> hard_start_xmit函数。在e100代码里,也就是e100_xmit_frame(). 进入里面看下:
static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
struct nic *nic = netdev_priv(netdev);
int err;

if(nic->flags & ich_10h_workaround) {
e100_exec_cmd(nic, cuc_nop, 0);
udelay(1);
}
err = e100_exec_cb(nic, skb, e100_xmit_prepare);
switch(err) {
case -ENOSPC:
/* We queued the skb, but now we're out of space. */
netif_stop_queue(netdev);
break;
case -ENOMEM:
/* This is a hard error - log it. */
DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb/n");
netif_stop_queue(netdev);
return 1;
}

netdev->trans_start = jiffies;
return 0;
}
继续跟踪进 e100_exec_cb(nic, skb, e100_xmit_prepare);
static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
{
struct cb *cb;
unsigned long flags;
int err = 0;

spin_lock_irqsave(&nic->cb_lock, flags);

if(unlikely(!nic->cbs_avail)) {
err = -ENOMEM;
goto err_unlock;
}

//将skb 推入环形发送缓冲
//cb_to_use:发送缓冲当前的使用位置
cb = nic->cb_to_use;
nic->cb_to_use = cb->next;
nic->cbs_avail--;
cb->skb = skb;

if(unlikely(!nic->cbs_avail))
err = -ENOSPC;

cb_prepare(nic, cb, skb);

/* Order is important otherwise we'll be in a race with h/w:
* set S-bit in current first, then clear S-bit in previous. */
cb->command |= cpu_to_le16(cb_s);
wmb();
cb->prev->command &= cpu_to_le16(~cb_s);
//当发送数据不为空。将余下数剧全部发送
while(nic->cb_to_send != nic->cb_to_use) {
if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
nic->cb_to_send->dma_addr))) {
/* Ok, here's where things get sticky. It's
* possible that we can't schedule the command
* because the controller is too busy, so
* let's just queue the command and try again
* when another command is scheduled. */
break;
} else {
nic->cuc_cmd = cuc_resume;
nic->cb_to_send = nic->cb_to_send->next;
}
}

err_unlock:
spin_unlock_irqrestore(&nic->cb_lock, flags);

return err;
}
在这里我们看到,发送数据过程主要由e100_exec_cmd完成。跟踪进去
static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
{
unsigned long flags;
unsigned int i;
int err = 0;

spin_lock_irqsave(&nic->cmd_lock, flags);

/* Previous command is accepted when SCB clears */
for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
if(likely(!readb(&nic->csr->scb.cmd_lo)))
break;
cpu_relax();
if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
udelay(5);
}
if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
err = -EAGAIN;
goto err_unlock;
}

if(unlikely(cmd != cuc_resume))
//将数据的存放地址放入对应寄存器
writel(dma_addr, &nic->csr->scb.gen_ptr);
//将发送操作写入控制寄存器
writeb(cmd, &nic->csr->scb.cmd_lo);

err_unlock:
spin_unlock_irqrestore(&nic->cmd_lock, flags);

return err;
}
从此可以看到。Intel 100M网卡对发送数据的处理,只需将地址,命令写入相应的寄存器即可。详细资料可以查看intel 100M网卡的说明。
令人不解的是,在发送数据时,不要将发送长度写入相关寄存器吗?那他又是如何截取的呢?

sk_buff结构分析
sk_buff是我们遇到的第二个重要的结构,在内核中经常被缩写成skb.在linux 2.6.21它被定义成:
struct sk_buff {
//指向下一个skb
struct sk_buff *next;
//上一个skb
struct sk_buff *prev;

struct sk_buf0f_head *list;
//对应的sock。这也是个重要的结构,在传输层的时候我们再来分析
struct sock *sk;
//接收或者发送时间戳
struct timeval stamp;
//接收或者发送时对应的net_device
struct net_device *dev;
//接收的net_device
struct net_device *input_dev;
//数据包对应的真实net_device.关于虚拟设备可以在之后的网桥模式分析中讨论
struct net_device *real_dev;
//ip层的相关信息
union {
struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct ipv6hdr *ipv6h;
unsigned char *raw;
} h;
//协议层的相关信息
union {
struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
unsigned char *raw;
} nh;
//链路层的相关信息
union {
unsigned char *raw;
} mac;
//在路由子系统中再来分析这一结构
struct dst_entry *dst;
struct sec_path *sp;

/*
* This is the control buffer. It is free to use for every
* layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone()
* first. This is owned by whoever has the skb queued ATM.
*/
char cb[40];
//各层的数据长度
unsigned int len,
data_len,
mac_len,
csum;
unsigned char local_df,
cloned,
pkt_type,
ip_summed;
__u32 priority;
unsigned short protocol,
security;

void (*destructor)(struct sk_buff *skb);
#ifdef CONFIG_NETFILTER
unsigned long nfmark;
__u32 nfcache;
__u32 nfctinfo;
struct nf_conntrack *nfct;
#ifdef CONFIG_NETFILTER_DEBUG
unsigned int nf_debug;
#endif
#ifdef CONFIG_BRIDGE_NETFILTER
struct nf_bridge_info *nf_bridge;
#endif
#endif /* CONFIG_NETFILTER */
#if defined(CONFIG_HIPPI)
union {
__u32 ifield;
} private;
#endif
#ifdef CONFIG_NET_SCHED
__u32 tc_index; /* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
__u32 tc_verd; /* traffic control verdict */
__u32 tc_classid; /* traffic control classid */
#endif

#endif

/* These elements must be at the end, see alloc_skb() for details. */
unsigned int truesize;
//引用计数
atomic_t users;
//存储空间的起始地址
unsigned char *head,
//网络数据的起始起址
*data,
//存放网络数据的结束地址
*tail,
//存储空间的结束地址
*end;
}
对应我们上面的网卡驱动分析。接收到的数据是存放在data至tail之间的区域。
Skb通常还有常用的几个函数,一一列举分析如下:
struct sk_buff *alloc_skb(unsigned int size,int gfp_mask)
分配存储空间为sixe的skb,内存分配级别为gfp_mask.注意这里的存储空间的含义,即为skb->data至skb->tail的区域
struct sk_buff *skb_clone(struct sk_buff *skb, int priority)
克隆出的skb指向同一个结构,同时会增加skb的引用计数
struct sk_buff *skb_copy(const struct sk_buff *skb, int priority)
复制一个全新的skb
void kfree_skb(struct sk_buff *skb)
当skb的引用计数为1的时候,释放此skb
unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
使skb的存储空间扩大len.即使tail指针下移
unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
push,即推出一段数据,使data指针下层。
void skb_reserve(struct sk_buff *skb, unsigned int len)
该操作使data指针跟tail指针同时下移,即扩大存储区域之前的空间
int skb_headroom(const struct sk_buff *skb)
返回data之前可用的空间数量
int skb_tailroom(const struct sk_buff *skb)
返回缓存区中可用的空间大小

二:从网卡驱动说起。
以intel 100M 网卡驱动为例简要概述数据包的接收与发送流程。代码见(drivers/net/e100.c)
网卡是属于PCI设备,它的注册跟一般的PCI设备注册没什么两样。
static int __init e100_init_module(void)
{
if(((1 << debug) - 1) & NETIF_MSG_DRV) {
printk(KERN_INFO PFX "%s, %s/n", DRV_DESCRIPTION, DRV_VERSION);
printk(KERN_INFO PFX "%s/n", DRV_COPYRIGHT);
}

//注册PCI
return pci_module_init(&e100_driver);
}
其中e100_driver对应为网卡的pci_driver.
static struct pci_driver e100_driver = {
//驱动对应的名字
.name = DRV_NAME,
//匹配类型
.id_table = e100_id_table,
//侦测函数
.probe = e100_probe,
//移除函数,设备移除时将调用此函数
.remove = __devexit_p(e100_remove),
#ifdef CONFIG_PM
.suspend = e100_suspend,
.resume = e100_resume,
#endif
}
当总数探测到PCI设备符合e100_id_table中的参数时,将会调用e100_probe,开始设备的初始化
在e100_probe中:
static int __devinit e100_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct nic *nic;
int err;

//分配net_device并为其赋值
//alloc_etherdev为以太网接口的net_device分配函数。它是alloc_netdev的封装函数
if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
if(((1 << debug) - 1) & NETIF_MSG_PROBE)
printk(KERN_ERR PFX "Etherdev alloc failed, abort./n");
return -ENOMEM;
}

//对netdev中的函数指针赋初值
netdev->open = e100_open;
netdev->stop = e100_close;
netdev->hard_start_xmit = e100_xmit_frame;
netdev->get_stats = e100_get_stats;
netdev->set_multicast_list = e100_set_multicast_list;
netdev->set_mac_address = e100_set_mac_address;
netdev->change_mtu = e100_change_mtu;
netdev->do_ioctl = e100_do_ioctl;
//支持ethtool工具时有效
SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
netdev->tx_timeout = e100_tx_timeout;
netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
//轮询函数
netdev->poll = e100_poll;
netdev->weight = E100_NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = e100_netpoll;
#endif

//获得net_device私有数据区,并对其赋值
//私有数据大小是由alloc_etherdev()参数中指定的
nic = netdev_priv(netdev);
nic->netdev = netdev;
nic->pdev = pdev;
nic->msg_enable = (1 << debug) - 1;
pci_set_drvdata(pdev, netdev);

//启动网卡.为之后DMA,I/O内存映射做准备
//它实际上是对PCI的控制寄存器赋值来实现的
if((err = pci_enable_device(pdev))) {
DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting./n");
goto err_out_free_dev;
}

//获取该资源相关联的标志
//如果该设备存在I/O内存,则置IORESOURCE_MEM
if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
"base address, aborting./n");
err = -ENODEV;
goto err_out_disable_pdev;
}

//对PCI的6个寄存器都会调用资源分配函数进行申请
if((err = pci_request_regions(pdev, DRV_NAME))) {
DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting./n");
goto err_out_disable_pdev;
}

//探制设备的DMA能力。如果设备支持DMA。pci_set_dma_mask返回0
pci_set_master(pdev);
if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) {
DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting./n");
goto err_out_free_res;
}

SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);

//映射设备对应的I/O。以后对设备寄存器的操作可以直接转换为对内存的操作
nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
if(!nic->csr) {
DPRINTK(PROBE, ERR, "Cannot map device registers, aborting./n");
err = -ENOMEM;
goto err_out_free_res;
}

if(ent->driver_data)
nic->flags |= ich;
else
nic->flags &= ~ich;

spin_lock_init(&nic->cb_lock);
spin_lock_init(&nic->cmd_lock);
//设置定时器。
init_timer(&nic->watchdog);
nic->watchdog.function = e100_watchdog;
nic->watchdog.data = (unsigned long)nic;
init_timer(&nic->blink_timer);
nic->blink_timer.function = e100_blink_led;
nic->blink_timer.data = (unsigned long)nic;

//为nic->mem建立线性DMA。只是在支持ethtool的时候才有用
if((err = e100_alloc(nic))) {
DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting./n");
goto err_out_iounmap;
}
//对nic成员赋初值
e100_get_defaults(nic);
e100_hw_reset(nic);
e100_phy_init(nic);
//读取网卡的EEPROM。其中存放着网卡的MAC地址。
//对EEPROM是通过对I/O映射内存的操作实现的,即nic->csr
if((err = e100_eeprom_load(nic)))
goto err_out_free;
//设置netdev->dev_addr
memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
if(!is_valid_ether_addr(netdev->dev_addr)) {
DPRINTK(PROBE, ERR, "Invalid MAC address from "
"EEPROM, aborting./n");
err = -EAGAIN;
goto err_out_free;
}

/* Wol magic packet can be enabled from eeprom */
if((nic->mac >= mac_82558_D101_A4) &&
(nic->eeprom[eeprom_id] & eeprom_id_wol))
nic->flags |= wol_magic;

pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
//注册网络设备
if((err = register_netdev(netdev))) {
DPRINTK(PROBE, ERR, "Cannot register net device, aborting./n");
goto err_out_free;
}

DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
"MAC addr %02X:%02X:%02X:%02X:%02X:%02X/n",
pci_resource_start(pdev, 0), pdev->irq,
netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);

return 0;

err_out_free:
e100_free(nic);
err_out_iounmap:
iounmap(nic->csr);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out_free_dev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
return err;
}

<<prison break>>第三季的第五集,终于在翘首企盼中姗姗来迟了,scofid用它惊人的智慧一次次化险为夷,但在邪恶的sona监狱他将如何逃脱呢?这我们不得而知,但我们可以分析Linux网络驱动来得到数据包是怎么通过物理接口的这一层“prison”束缚来达到通信目的:-)
一:预备知识
关于I/O内存映射。
设备通过控制总线,数据总线,状态总线与CPU相连。控制总数传送控制信号,例如,网卡的启用。数据总线控制数据传输,例如,网卡发送数据,状态总数一般都是读取设备的当前状态,例如读取网卡的MAC地址。
在传统的操作中,都是通过读写设备寄存器的值来实现。但是这样耗费了CPU时钟。而且每取一次值都要读取设备寄存器,造成了效率的低下。在现代操作系统中。引用了I/O内存映射。即把寄存器的值映身到主存。对设备寄存器的操作,转换为对主存的操作,这样极大的提高了效率。
关于DMA
这是关于设备数据处理的一种方式。传统的处理方法为:当设备接收到数据,向CPU报告中断。CPU处理中断,把数据放到内存。
在现代操作系统中引入的DMA是指,设备接收到数据时,把数据放至DMA内存,再向CPU产生中断。这样节省了大量的CPU时间
关于软中断与NAPI
在现代操作系统中,对中断的处理速度要求越来越高。为了响应中断,将中断分为两部份,即上半部与下半部。上半部将数据推入处理队列,响应中断。然后再由下半部调度完成余下的任务。
NAPI是2.6新引入的一个概念,它在发生中断的时候,禁用中断。然后处理数据。之后,每隔一定的时候,它会主动向设备询用是否有数据要处理。
I/O,DMA在后续代码分析中会讨论在linux2.6.21中的实现。软中断与NAPI的详细知识将会在分析中断处理的时候,一一为你道来
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: