您的位置:首页 > 其它

群集和双机热备的概念与区别

2007-11-15 14:57 232 查看
[align=center]解析磁盘阵列的关键技术[/align]
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。
  但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
  在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。
  并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
  回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。
  从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
  SCSI技术
  SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场。
  SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等。渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准。
  通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系。SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切。
提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量。图1和图2为分别为比较典型的Ultra Wide SCSI(40MB/s)和Ultra 3 LVD SCSI(160MB/s)的实际访问速度(Winbench 99测试)。可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍。



  一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度。尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视。在图3中,按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;而图4则在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%。



  随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用。同时,LVD(Low-Voltage Differential)技术的应用也越来越多。



  LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离。同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量。LVD工作模式和SE工作模式的对比如图5所示。
  RAID技术
  在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘。所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同。
  RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及。据统计,全世界75%的服务器系统目前没有配置RAID。由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大。RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。



  RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失。所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。



  RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
  RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。



  表1 scsi工作模式的特点和技术参数
  RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6)。任何一块硬盘上数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低。



  对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义。



  各厂商还在不断推出各种RAID级别和标准。例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及。用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘。由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多。
  总之,发展是永恒的主题,在服务器存储技术领域也不例外。一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展。在市场经济条件下,检验技术发展的唯一标准是市场的认同。市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认。随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现。



  现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择。表2列出了几种磁盘阵列的主要技术指标。
  小知识:磁盘阵列的可靠性和可用性
  可靠性,指的是硬盘在给定条件下发生故障的概率。可用性,指的是硬盘在某种用途中可能用的时间。磁盘阵列可以改善硬盘系统的可靠性。从表3中可以看到RAID硬盘子系统与单个硬盘子系统的可靠性比较。
  此外,在系统的可用性方面,单一硬盘系统的可用性比没有数据冗余的磁盘阵列要好,而冗余磁盘阵列的可用性比单个硬盘要好得多。这是因为冗余磁盘阵列允许单个硬盘出错,而继续正常工作;一个硬盘故障后的系统恢复时间也大大缩短(与从磁带恢复数据相比);冗余磁盘阵列发生故障时,硬盘上的数据是故障当时的数据,替换后的硬盘也将包含故障时的数据。但是,要得到完全的容错性能,计算机硬盘子系统的其它部件也必须有冗余。
  存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。
  但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
  在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。
  并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
  回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。
  从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
[align=left] 什么是群集?[/align]
[align=left]很简单的说就是2台或多台机器当作一个整体在运行,在正常的时候你的应用在A上,在A出现故障的情况下,另外一台及其继续提供服务,服务不会因为A机器有问题而停止.
只是在切换过程中应用短暂的不可用,在切换完成后应用恢复正常,切换时间有长有短。[/align]
[align=left]什么是双机热备?[/align]
应众多网友的要求,本文仅就双机热备的基本概念做一阐释,希望能够起到抛砖引玉的作用。
问:能解释一下什么是双机热备吗?
答:所谓双机热备,就是将中心服务器安装成互为备份的两台服务器,并且在同一时间内只有一台服务器运行。当其中运行着的一台服务器出现故障无法启动时,另一台备份服务器会迅速的自动启动并运行(一般为2分钟左右),从而保证整个网络系统的正常运行!双机热备的工作机制实际上是为整个网络系统的中心服务器提供了一种故障自动恢复能力。
问:什么时候需要双机热备呢?
答:这个问题其实比较简单,一般服务器要长年累月的工作,其备份工作就绝对少不了。所以,决定是否使用双机热备,笔者觉得应首先对系统的重要性,以及终端用户对服务中断的容忍程度进行考虑,然后再来决定是否使用双机热备。比如网络中的用户最多能容忍多长时间恢复服务?如果服务不能很快恢复会造成什么样的后果等等。
问:已经采取了RAID技术和数据备份技术,还有必要做双机热备吗?
答:这其实没有个明确的区分,RAID和数据备份都同等重要!数据备份只能解决系统出现问题后的恢复;而RAID技术,以笔者的使用经验来看又只能解决硬盘的问题。我们知道,当服务器本身出现问题时,不论是设备的硬件问题还是软件系统的问题,都会造成服务的中断,而RAID及数据备份技术恰恰就不能解决避免服务中断的问题。所以,对于高安全需求、持续可靠的提供应用服务的网络系统来说,双机热备还是非常重要的。其实我们可以这样想:如果你的服务器坏了,你要用多少时间将其恢复到能正常工作?这样你就能理解双机热备的重要性了!
问:双机热备方案与集群的区别?
答:从概念上来讲,双机热备属于集群中的一种。集群一般包括两类:一类是纯应用服务器的集群,即各个应用服务器都访问统一的数据库服务器,但彼些并不需要文件共享存储等,这种集群是比较简单的。另一类是数据库服务器的双机热备,这种双机热备实现,一般是两台服务器同时使用共享的存储设备,并且在普遍的情况下,均采取主、备的方式(也有高端的系统采用并行的方式,即两台服务器同时提供服务)。
问:数据库服务如何使用双机热备?
答:通过软件方式实现双机热备。即不采用共享的存储设备,而是本机数据可以直接在多台主机间流动。显而易见,此种方式最大的优点就是节约了昂贵的存储设备投资,而其缺点也不难发现:会产生数据的前后不一致、或者会影响数据库读取的速度。我们看看这样一个例子:如果在服务中断时切换到备份服务器,则可能有少量已经在主机完成的事务在备机上尚未实现。而与备份数据的恢复不同,备机启动后,后面的操作已经进行,因此丢失的数据包要找回就相当难。故此种方式适用于对于丢失少量数据不是非常敏感的系统。
在这儿提一下标准的解决方法,即基于共享存储设备和双机软件实现双机热备。它可以在无人值守的情况下提供快速的切换,并且不会有数据丢失现象,而购买存储设备等投资也会比较高。
问:如何选择与实施双机热备的配置方案?
答:1. 以应用为主导,进行认真的分析。以高可用性为宗旨。
2. 考虑是采用数据库双机热备还是应用服务器集群、还是软件备份方式。
3. 选择确定具体的设备、软件的型号等。笔者在这里提醒大家,不同的软件或是硬盘等存储设备,他们之间存在兼容性的问题,因此在购买之前应咨询专业人员,不要出现采购了双机软件对相关的存储设备存在不兼容等现象。
4. 在实施完成后,一定要进行测试,以确保工作正常,而且应注意在运行过程中定期的对系统是否能够正常切换进行测试。
为什么要做双机热备?
双机热备针对的是服务器的故障。
 服务器的故障可能由各种原因引起,如设备故障、操作系统故障、软件系统故障等等。一般地讲,在技术人员在现场的情况下,恢复服务器正常可能需要10分钟、几小时甚至几天。从实际经验上看,除非是简单地重启服务器(可能隐患仍然存在),否则往往需要几个小时以上。而如果技术人员不在现场,则恢复服务的时间就更长了。
 而对于一些重要系统而言,用户是很难忍受这样长时间的服务中断的。因此,就需要通过双机热备,来避免长时间的服务中断,保证系统长期、可靠的服务。
 决定是否使用双机热备,正确的方法是要分析一下系统的重要性以及对服务中断的容忍程度,以此决定是否使用双机热备。即,你的用户能容忍多长时间恢复服务,如果服务不能恢复会造成多大的影响。
 在考虑双机热备时,需要注意,一般意义上的双机热备都会有一个切换过程,这个切换过程可能是一分钟左右。在切换过程中,服务是有可能短时间中断的。但是,当切换完成后,服务将正常恢复。因此,双机热备不是无缝、不中断的,但它能够保证在出现系统故障时,能够很快恢复正常的服务,业务不致受到影响。而如果没有双机热备,则一旦出现服务器故障,可能会出现几个小时的服务中断,对业务的影响就可能会很严重。
 另有一点需要强调,即服务器的故障与交换机、存储设备的故障不同,其概念要高得多。原因在于服务器是比交换机、存储设备复杂得多的设备,同时也是既包括硬件、也包括操作系统、应用软件系统的复杂系统。不仅设备故障可能引起服务中断,而且软件方面的问题也可能导致服务器不能正常工作。
 还应指出的是,一些其他的防护措施如磁盘阵列(RAID)、数据备份虽然是非常重要的,但却不能代替双机热备的作用。
[align=center]分析:存储技术 SAS一统磁盘江湖[/align]
[align=left]并行磁盘技术的各类弊端导致其发展乏术,而串行磁盘技术则具有许多先天优势,随着串行技术的不断发展与成熟,它很有可能统一整个磁盘存储领域。
  SAS天生丽质
  SAS 是Serial Attached SCSI的缩写,即串行连接SCSI。2001年11月26日,Compaq、IBM、LSI逻辑、Maxtor和Seagate联合宣布成立SAS工作组,其目标是定义一个新的串行点对点的企业级存储设备接口。2003年5月,SAS 1.0规范正式出台并提交给ANSI(美国国家标准协会)讨论,同年9月,SAS 1.0正式通过ANSI认证。
  如今,主流的服务器存储接口标准都依赖于数据流的并行传输。并行SCSI接口技术广泛应用于企业级存储,ATA接口技术则主要被大量用于PC产品。随着服务器被要求满足不断提高的系统和应用需求,并行技术无法回避的各种问题,如信号终止限制,电缆和连接器的反射,信号扭曲和串音,以及设备寻址能力等问题都成为提高数据传输性能的障碍。
  为了解决并行技术的种种弊端,串行技术应运而生。SAS是SCSI总线协议的串行标准,同样SATA是ATA的串行标准。为保护用户投资,SAS规范也兼容了SATA,这使得SAS的背板可以兼容SAS和SATA两类硬盘, 对用户来说,使用不同类型的硬盘时不需要再重新投资。而背板生产厂家也不需要为SCSI和SATA标准分别设计不同的产品,同时也减少了设计时布线的复杂度和PCB(印刷电路板)的层数,因此降低了成本。系统集成商也不需要为给客户配置不同硬盘而采购不同的背板和线缆。
  SAS技术引入了SAS扩展器,使SAS系统可以连接更多的设备,其中每个扩展器允许连接多个端口,每个端口可以连接SAS设备、主机或其他SAS扩展器。
  目前,SAS接口速率为3Gbps,其SAS扩展器多为12端口。不久,将会有6Gbps甚至12Gbps的高速接口出现,并且会有28或36端口的SAS扩展器出现以适应不同的应用需求。
  LSI逻辑公司存储标准产品部门行业市场总监Harry Mason介绍说,SAS的优点很多,主要可以归结为四个方面:性能、灵活性、可扩展性和可靠性。
  SAS性能包括初始3Gbps的传输速率,以及先进的指令队列,多种点到点路由和容错设计。点到点的体系结构使它能够在同一端口同时进行读和写。双端口特性使它支持多个启动设备间的连接,从而使可用带宽加倍。SAS布线非常紧凑,支持更好的空气流通和简便的热插拔连接。
  IT经理使用SAS体系结构可获得更多的灵活性。背板设计和接口协议支持同时使用SAS和SATA硬盘驱动器,使集成商和用户受益(权衡成本、性能和任务关键应用)。实际上,可以建立任何具有互操作性保证的混合型存储系统。SAS也可向后兼容SCSI软件和中间件,减少了对于已升级系统或对遗留软件修改的培训需求。
  鉴于如今系统需求的不断变更,SCSI可扩展性是一种关键性的需求。SAS使用交换机这样的扩展器硬件,简化了用于较大型的外部存储应用的配置。因此,它们可以不断增加,而对延迟具有非常小的影响,并且允许保存带宽用于增加的工作负荷。此外,扩展器支持很多拓扑结构,最多可超过16000台混合的SAS/SATA硬盘驱动器。
  使用双端口SAS硬盘驱动器可以建造高可用性的系统。由于没有单点故障,这使得硬盘驱动器是可用的,从而增加了容错性能。
  LSI逻辑公司RAID存储适配器部门产品和项目管理总监Luca Bert表示,SAS技术的出现会很大程度上改变当今磁盘应用的情况,概括来说,光纤通道磁盘会继续应用在最高性能的高端领域,SATA磁盘广泛应用在低端PC服务器,而剩余绝大部分领域都会是SAS的天下。
  SCSI的过去与未来
  当80年代中期SCSI第一次出现在计算机系统上时,它的确是物如其名。SCSI当时是设计应用在由HP、SGI、Sun以及许多现在早已不复存在的其他厂商(例如Apollo、Ardent、Dana和Data General,还有Stardent,许多人可能都不记得它们了)生产的早期工程工作站中。
  SCSI设计用于满足CAD和工程的高性能数据需要。那时,拥有8位和16位连线,这些连线以5MBps速率传送数据,然后以10MBps的速度传送,后来SCSI开始逐渐退出工程部门,慢慢进入IT机构。在IT机构中它首先出现在来自Prime Computer和其他厂商的超级小型机使用的早期的RAID实现中。
  到90年代中期,存储需求不断增加,硬盘不断发展,I/O要求变得更加苛刻。以前被称为“Fast SCSI”(10MB)的技术不再被认为是快速了。ANSI T10技术委员会定义了演进中的SCSI标准,将性能规范由10MB提高到20MB(Fast 20),接着又提高到40MB(最初叫Fast-40,以后改名为Ultra2)。
  也是在90年代中期,Adaptec和NCR Microelectronics(现在叫LSI逻辑)等芯片制造商与硬盘厂商(Quantum当时是早期技术领导者,紧随其后的是Seagate)以及连接器制造商合作,提供可互操作的解决方案,帮助通过委员会推动这个演进标准的发展。他们还推出了第一批产品,并帮助创建了SCSI行业协会,即向全球营销SCSI概念的厂商组织。
  现在,虽然光纤通道似乎成为新闻报道中的主角,但保存在硬盘上的大部分企业数据是通过SCSI保存的。
  到本世纪头10年,规范发展到了Ultra160和Ultra320。显而易见,当I/O达到每秒320MB时,SCSI已经失去了发展空间。因此,SCSI,以前的并行接口,被改造提供串行连接。现在,SAS产品终于开始下线。
  SAS接口具有多种优势。最明显的优势是它在吞吐量方面比并行SCSI有了显著的改进(大致是后者的4倍)。SAS还使更多的硬盘可以连接在SCSI总线上:并行SCSI可在15个地址上连接设备,但是即使假设每个地址上连接多个逻辑设备(LUN),并行SCSI也不可能达到SAS提供的连接能力—通过扩展器可提供多达128个地址。
  当然,不管是并行SCSI还是串行SCSI都不能立即从这么多的设备中访问数据:5块硬盘同时运行是可能让总线饱和的数量。不过,通过适当的管理,一个应用可以利用SAS连接在很多的数据上,然后连接需要串行输入数据。
  厂商喜欢串行技术,因为它们设计起来比并行连接要容易得多。串行技术在涉及到线缆时占用更小的体积(这意味着更低廉的成本),而更小的体积意味着对气流更少的限制,因而更小的风扇(进一步降低成本)。但是,厂商喜欢串行设计的主要原因是信号与系统时钟的关系变得更加简单。例如,并行SCSI必须将时钟与多个独立的并行线路上的信号保持同步,而在使用SAS时,所有的信号都在一根线路上传送。控制同步更加容易,因此设备背板、连接器等等部件设计起来更加容易,设计的费用也更加低廉。
  与会技术专家预计SAS市场能够以较快的速度在2005年下半年快速增长。2007年,SAS的市场份额预计会达到60%。[/align]
[align=left]  [/align]

[align=left]各类磁盘技术之比较[/align]
[align=left]技术类型[/align]
[align=left]主要优势[/align]
[align=left]主要劣势[/align]
[align=left]应用领域[/align]
[align=left]应用领域[/align]
[align=left]ATA[/align]
[align=left]价格低廉[/align]
[align=left]性能较低[/align]
[align=left]PC[/align]
[align=left]PC[/align]
[align=left]SCSI[/align]
[align=left]性能较高[/align]
[align=left]并行技术的弊端[/align]
[align=left]企业级存储[/align]
[align=left]企业级存储[/align]
[align=left]FC[/align]
[align=left]高性能、高可靠性[/align]
[align=left]价格较高[/align]
[align=left]高端存储[/align]
[align=left]高端存储[/align]
[align=left]SATA[/align]
[align=left]价格低、容量高[/align]
[align=left]性能、可靠性较低[/align]
[align=left]中低端存储[/align]
[align=left]中低端存储[/align]
[align=left]SAS[/align]
[align=left]高性能、高可靠性[/align]
[align=left]未完全成熟[/align]
[align=left]中高端存储[/align]
[align=left]中高端存储[/align]
SATA接口是什么意思?有什么用?
硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏。从家用用户的角度出发,硬盘接口分为IDE、SATA两种规格,不过他们各自具有自身的优势和特点,用户需要根据自身的情况来加以选择。
IDE接口硬盘及主板接口
IDE接口硬盘一般就是我们俗称的并行规格的PATA硬盘,目前大多数台式存储系统采用的都是称为Ultra-ATA的并行总线接口硬盘产品,这样的规格技术是自80年代以来一直被应用在桌上型系统作为主流的内部储存互连技术,由于运用领域十分广泛时间又较长,所以成熟的技术带来的是大规模集成制造的低成本和飞速发展的大容量。
由于长时间的没有改变,在数据的传输上来看,这种IDE接口硬盘显得有一些滞后,因为目前主流的PATA硬盘仅能支持ATA/100和ATA/133两种数据传输规范,传输速率最高只能达到 每秒100或133MB,这仅可以满足目前一般情况下的大容量硬盘数据传输。另外,这类硬盘所使用的80-pin数据线在机箱内部杂而乱,它会阻碍空气在机箱里的流动,从而影响到系统的散热。虽然劣势明显,不过对于一些原来老用户来说,由于原有的主板平台并不支持SATA接口,这种IDE接口的PATA大容量硬盘还是首选,还有一些用户认为这类型的硬盘在技术上成熟、稳定,所以也选择这类型的PATA硬盘。
由英特尔、戴尔、希捷、Maxtor以及APT等厂商所组成serialata.org,推出了就硬盘而言的新技术规格,Serial ATA,它为串行接口,在IDF Fall 2001大会上,希捷宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立这也是硬件新近颁布的一种的标准。
在技术特点来看,不得不承认PATA硬盘在安装、传输速率及功耗、抗震、噪声等多方面都要逊于SATA硬盘。因为SATA硬盘它具有更快的外部接口传输速度,数据校验措施更为完善,SATA 1.0规范规定的标准传输率可以达到150MB/S,这样可以充分发挥Serial ATA接口的性能优势,因为ATA100的理论数值是100MB/s,即便是ATA133也最高为133MB/s。另外在安装上首先SATA的连接线非常方便,而且SATA最重要的特性就是支持热插拔。串行SATA方式通过更好的数据校验方式,信号电压低可以有效的减小各种干扰,从而大大提高数据传输的效率,而且新式的SATA硬盘连接线也更加有利机箱内部的散热。
SATA并非只有优点,在缺点上也是显而易见,由于SATA规格还不十分成熟,这种类型的硬盘对外频要求要比并行规格硬盘高,如果用户有超频的情况这时一定要注意,因为它就会常常出现找不到硬盘或数据损坏的情况。目前支持SATA 2.0的硬盘也已经推出,相信不久SATA 3.0也会出现在市场中,但并非标准越高就越好,就目前而言这种SATA2.0规范的硬盘主要还是针对服务器和网络存储应用,如普通消费者选择SATA 1.0规范的硬盘产品足以 。
一般PATA的硬盘传输速度有:
Ultra-ATA33
Ultra-ATA66
Ultra-ATA100
Ultra-ATA133
SATA硬盘传输速度有:
Ultra-ATA150
SATA是Serial ATA的缩写,即串行ATA。这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
与并行ATA相比,SATA具有比较大的优势。首先,Serial ATA以连续串行的方式传送数据,可以在较少的位宽下使用较高的工作频率来提高数据传输的带宽。Serial ATA一次只会传送1位数据,这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/sec,这比目前最块的并行ATA(即ATA/133)所能达到133MB/sec的最高数据传输率还高,而目前SATA II的数据传输率则已经高达300MB/sec。
Serial ATA规范不仅立足于未来,而且还保留了多种向后兼容方式,在使用上不存在兼容性的问题。在硬件方面,Serial ATA标准中允许使用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成Serial ATA硬盘能够使用的串行信号,目前已经有多种此类转接卡/转接头上市,这在某种程度上保护了我们的原有投资,减小了升级成本;在软件方面,Serial ATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用Serial ATA而重写任何驱动程序和操作系统代码。
另外,Serial ATA接线较传统的并行ATA(Paralle ATA)接线要简单得多,而且容易收放,对机箱内的气流及散热有明显改善。而且,SATA硬盘与始终被困在机箱之内的并行ATA不同,扩充性很强,即可以外置,外置式的机柜(JBOD)不单可提供更好的散热及插拔功能,而且更可以多重连接来防止单点故障;由于SATA和光纤通道的设计如出一辙,所以传输速度可用不同的通道来做保证,这在服务器和网络存储上具有重要意义。
而SATA II是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的1.5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(Native Command Queuing,原生命令队列)、端口多路器(Port Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATA II。
SATA II的关键技术就是3Gbps的外部传输率和NCQ技术。NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写硬盘的不同位置,与此相反,它会在接收命令后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。另外并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持 NCQ之外,也要求主板芯片组的SATA控制器支持NCQ。此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。
由于SATA设备市场比较混乱,不少SATA设备提供商在市场宣传中滥用“SATA II”的现象愈演愈烈,例如某些号称“SATA II”的硬盘却仅支持3Gbps而不支持NCQ,而某些只具有1.5Gbps的硬盘却又支持NCQ,所以,由希捷(Seagate)所主导的SATA-IO(Serial ATA International Organization,SATA国际组织,原SATA工作组)又宣布了SATA 2.5规范,收录了原先SATA II所具有的大部分功能——从3Gbps和NCQ到交错启动(Staggered Spin-up)、热插拔(Hot Plug)、端口多路器(Port Multiplier)以及比较新的eSATA(External SATA,外置式SATA接口)等等。
值得注意的是,部分采用较早的仅支持1.5Gbps的南桥芯片(例如VIA VT8237和NVIDIA nForce2 MCP-R/MCP-Gb)的主板在使用SATA II硬盘时,可能会出现找不到硬盘或蓝屏的情况。不过大部分硬盘厂商都在硬盘上设置了一个速度选择跳线,以便强制选择1.5Gbps或3Gbps的工作模式(少数硬盘厂商则是通过相应的工具软件来设置),只要把硬盘强制设置为1.5Gbps,SATA II硬盘照样可以在老主板上正常使用。
SATA硬盘在设置RAID模式时,一般都需要安装主板芯片组厂商所提供的驱动,但也有少数较老的SATA RAID控制器在打了最新补丁的某些集成了SATA RAID驱动的版本的Windows XP系统里不需要加载驱动就可以组建RAID。
SATA相较并行ATA可谓优点多多,将成为并行ATA的廉价替代方案。并且从并行ATA完全过渡到SATA也是大势所趋,应该只是时间问题。相关厂商也在大力推广SATA接口,例如Intel的ICH6系列南桥芯片相较于ICH5系列南桥芯片,所支持的SATA接口从2个增加到了4个,而并行ATA接口则从2个减少到了1个;而ICH7系列南桥则进一步支持了4个SATA II接口;下一代的ICH8系列南桥则将支持6个SATA II接口并将完全抛弃并行ATA接口;其它主板芯片组厂商也已经开始支持SATA II接口;目前SATA II接口的硬盘也逐渐成为了主流;其它采用SATA接口的设备例如SATA光驱也已经出现。
值得注意的是,无论是SATA还是SATA II,其实对硬盘性能的影响都不大。因为目前硬盘性能的瓶颈集中在由硬盘内部机械机构和硬盘存储技术、磁盘转速所决定的硬盘内部数据传输率上面,就算是目前最顶级的15000转SCSI硬盘其内部数据传输率也不过才80MB/sec左右,更何况普通的7200转桌面级硬盘了。除非硬盘的数据记录技术产生革命性的变化,例如垂直记录技术等等,目前硬盘的内部数据传输率也难以得到飞跃性的提高。说得不好听的话,目前的硬盘采用ATA 100都已经完全够用了,之所以采用更先进的接口技术,是可以获得更高的突发传输率、支持更多的特性、更加方便易用以及更具有发展潜力罢了。
SATA和串口与并口没关系。他是硬盘的接口,数据传输采用串行传输方式。减少了干扰,最新的SATA接口速度完全超过PATA接口的硬盘。但是SATA接口的硬盘一定要配合大容量的缓存。
它读的比较快!
SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA(Serial ATA,缩写为SATA)硬盘的兼容性。
  作为并行SCSI的后继技术,SAS能够为企业级存储应用提供更高的性能、扩展性和可靠性。SAS接口兼容SATA,使系统开发人员可以灵活地在系统中集成SAS或SATA设备。未来,第二代和第三代的SAS界面将提供6-12Gbps的数据带宽,并支持HostRAID。
从无到有了解SAS技术与SAS硬盘


         


【编者按】存储领域的磁盘介质是最关键的设备,所有数据和信息都要存放在磁盘介质上。而数据的读取速度则是由磁盘介质的连接接口决定的。以往我们都是通过SCSI或者SATA接口及硬盘来完成数据存储工作。不过近些年一个新型技术越来越得到中小企业甚至是大型企业的青睐。就是SAS技术以及与之相对应的SAS硬盘。今天我们就从无到有的来了解下什么是SAS技术以及使用SAS硬盘的优势。
[align=left]【正文】存储领域的磁盘介质是最关键的设备,所有数据和信息都要存放在磁盘介质上。而数据的读取速度则是由磁盘介质的连接接口决定的。以往我们都是通过SCSI或者SATA接口及硬盘来完成数据存储工作。不过近些年一个新型技术越来越得到中小企业甚至是大型企业的青睐。就是SAS技术以及与之相对应的SAS硬盘。今天我们就从无到有的来了解下什么是SAS技术以及使用SAS硬盘的优势。
  一、常见磁盘技术与接口类型优劣:
  网络存储设备目前大致可分为三大类,即高端中端和近端(Near-Line)。高端存储设备主要是光纤通道为主,由于光纤通道传输速度很快,所以高端存储光纤设备大部分应用于任务级关键数据的大容量实时存储上。中端存储设备主要是SCSI设备,他的历史也很悠久,应用于商业级的关键数据的大容量存储。近端是近年来新出现的存储领域,其产品主要是串行ATA(Serial ATA,缩写为SATA),应用于非关键数据的大容量存储,目的是替代以前使用磁带的数据备份。
  光纤通道存储设备的最大优势就是传输速度快,但是他的价格很高,维护起来也相对麻烦;而SCSI设备存取速度相对比较快,价格位于中等位置,但是他的扩展性稍微差一点,每个SCSI接口卡最多只能连接15个(单通道)或者30个(双通道)设备。SATA则是近几年飞速发展的技术,他的最大优势就是价格便宜,而且速度并不比SCSI接口慢多少,随着技术的发展SATA的数据读取速度正在接近并赶超SCSI接口。另外由于SATA的硬盘价格越来越低,容量越来越大,逐渐可以用于数据备份。
  因此传统的企业级存储由于考虑到性能和稳定性,以SCSI硬盘和光纤通道为主要存储平台,ATA则多用于非关键性资料或桌面个人计算机上,不过随着SATA技术的兴起与SATA设备的成熟,这个模式正在被改变,越来越多的人都开始关注SATA这种串行数据存储连接方式。
[/align]
二、什么是SAS技术?
  正因为SATA技术的飞速发展以及多方面的优势,才会让更多的人考虑能否存在一种方式可以将SATA与SCSI两者相结合,这样就可以同时发挥两者的优势了。在这种情况下SAS应运而生。
  SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA(Serial ATA,缩写为SATA)硬盘的兼容性。
  SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。因为SAS驱动器的端口与SATA驱动器的端口形状看上去类似,所以SAS驱动器和SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。由于SAS系统的兼容性,IT人员能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。说白了SAS接口技术就是使用串行接口的SCSI硬盘,他和SATA硬盘是兼容的,我们可以在SAS接口上安装SAS硬盘或者SATA硬盘。
三、SAS技术的优势:
  正如前面所说SAS技术与SAS硬盘是在人们希望发挥SATA与SCSI接口共同优势的基础上诞生的。那么集中两者优势形成的SAS到底在哪些方面存在过人之处呢?
  (1)SAS技术降低了磁盘阵列的成本:
  以往不管使用SCSI接口还是FC光纤接口,当一个厂商生产磁盘阵列柜时需要的技术是非常高的,成本也很高,因为存储设备厂商目前投入相当多的成本以支持包括光纤通道阵列、SATA阵列等不同的存储设备。而SAS技术具备简化内部连接设计的优势,可以通过共用组件降低设计成本。这样就可以花更少的钱享受SCSI接口的性能。
  (2)串行接口让传输性能提高:
  串行SCSI是点到点的结构,可以建立磁盘到控制器的直接连接。通过点到点技术可以减少了地址冲突以及菊花链连结的减速,为每个设备提供了专用的信号通路来保证最大的带宽,并且每个传输通道都是在全双工方式下进行的。总的说来他的性能要比传统SCSI更高。
  (3)更好的扩展性能:
  上面笔者也提到了SCSI接口的扩展性能一般,最多只能连接15个(单通道)或者30个(双通道)设备。而经过改良后的SAS接口则大大不同,SAS结构有非常好的扩展能力,最多可以连接16384个磁盘设备。
  (4)安装更简单:
  SAS接口使用更细的电缆搭配更小的连接器,一方面节约了服务器或存储设备的空间,另一方节省了空间,从而提高了使用SAS硬盘服务器的散热、通风能力。而传统的SCSI接口使用较大的并行电缆,这会带来部分电子干扰,采用SAS的电缆结构就不会出现此问题。另外每个SAS电缆有四根电缆,两根输入两根输出。SAS可以同时进行数据的读写,全双工的数据操作提高数据的吞吐效率。
  (5)更好的兼容性:
  正如上文所说我们在SAS接口卡上安装SATA设备也是可以正常工作的,这样就让我们的存储系统应用更加灵活,可以根据实际需求选择SAS磁盘或者SATA磁盘,降低了成本的同时也保证了性能。对于对数据读取速度要求不高的地方可以使用SATA设备替代SAS设备。
  总的来说SAS技术是结合了SATA与SCSI两者的优点而诞生的,同时串行SCSI(SAS)是点到点的结构,因此除了提高性能之外,每个设备连接到指定的数据通路上提高了带宽,从而为数据传输与存取提供了必要保障。

[align=left] 四、实施SAS需要哪些设备?
  由于SAS技术仅仅是在SCSI基础上对连接接口进行了改进,从并行接口改变成串行接口。所以在使用和设置上和原来的SCSI存储技术非常类似。和SCSI设备一样我们需要SAS接口卡和SAS磁盘两部分来组建SAS系统。
  (1)SAS接口卡:
  由于大部分主板都没有提供SAS模块功能,所以我们只能通过SAS接口卡(扩展卡)来实现SAS系统的搭建。目前LSI Logic和Adaptec两大公司都提供了基于SAS技术的接口卡,我们购买回来直接安装在主板的插槽上即可。
  (2)SAS磁盘:
  从大小上来说SAS磁盘主要有两种,一种是2.5英寸的,另一种是3.5英寸的,具体选择哪个要看我们SAS接口卡上支持哪种。另外磁盘转速基本在10000RPM到15000RPM之间。日立,富士通,老希捷,老迈拓都生产过SAS磁盘。
  总结:
  SAS技术是SCSI与SATA两者的完美结合,在功能上将SCSI比了下去,在兼容性上又可以与SATA设备正常连接,因此很多存储厂商都认为SAS技术将取代并行SCSI。笔者也认为在不久的将来,SAS技术会在中端市场和近端市场有惊人的表现,未来赶超和取代FC光纤设备也不是没有可能。[/align]
[align=left]  SAS、FC、SATA、iSCSI是现在最热点的存储技术,其中,SAS代表着新一代的串行接口技术的最新成果,凭借其灵活应用、高性能传输、性价比高的有点,相信SAS将会迅速成为存储领域的全新选择。[/align]

[align=left][/align]
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: