您的位置:首页 > 运维架构

写operator new和operator delete的规则

2007-03-05 22:26 411 查看
自己重写operator new时,很重要的一点是函数提供的行为要和系统缺省的operator new一致。实际做起来也就是:要有正确的返回值;可用内存不够时要调用出错处理函数;处理好0字节内存请求的情况。此外,还要避免不小心隐藏了标准形式的new。

有关返回值的部分很简单。如果内存分配请求成功,就返回指向内存的指针;如果失败,则抛出一个std::bad_alloc类型的异常。

但事情也不是那么简单。因为operator new实际上会不只一次地尝试着去分配内存,它要在每次失败后调用出错处理函数,还期望出错处理函数能想办法释放别处的内存。只有在指向出错处理函数的指针为空的情况下,operator new才抛出异常。

另外,c++标准要求,即使在请求分配0字节内存时,operator new也要返回一个合法指针。(实际上,这个听起来怪怪的要求确实给c++语言其它地方带来了简便)。这样,非类成员形式的operator new的伪代码看起来会象下面这样:

void * operator new(size_t size) // operator new还可能有其它参数
{
if (size == 0) { // 处理0字节请求时,
size = 1; // 把它当作1个字节请求来处理
}
while (1) {
分配size字节内存;
if (分配成功)
return (指向内存的指针);

// 分配不成功,找出当前出错处理函数
new_handler globalhandler = set_new_handler(0);
set_new_handler(globalhandler);
if (globalhandler) (*globalhandler)();
else throw std::bad_alloc();
}
}

处理零字节请求的技巧在于把它作为请求一个字节来处理。这看起来很怪,但简单,合法,有效。奇怪上面的伪代码中为什么把出错处理函数置为0后又立即恢复。这是因为没有办法可以直接得到出错处理函数的指针,所以必须通过调用set_new_handler来找到。办法很笨但也有效。

operator new内部包含一个无限循环,上面的代码清楚地说明了这一点——while (1)将导致无限循环。跳出循环的唯一办法是内存分配成功或出错处理函数完成了下面事件中的一种:得到了更多的可用内存;安装了一个新的new-handler(出错处理函数);卸除了new-handler;抛出了一个std::bad_alloc或其派生类型的异常;或者返回失败。现在明白了为什么new-handler必须做这些工作中的一件。如果不做,operator new里面的循环就不会结束。

很多人没有认识到的一点是operator new经常会被子类继承。这会导致某些复杂性。上面的伪代码中,函数会去分配size字节的内存(除非size为0)。size很重要,因为它是传递给函数的参数。但是大多数针对类所写的operator new都是只为特定的类设计的,不是为所有的类,也不是为它所有的子类设计的。这意味着,对于一个类x的operator new来说,函数内部的行为在涉及到对象的大小时,都是精确的sizeof(x):不会大也不会小。但由于存在继承,基类中的operator new可能会被调用去为一个子类对象分配内存:

class base {
public:
static void * operator new(size_t size);
...
};
class derived: public base // derived类没有声明operator new
{ ... }; //
derived *p = new derived; // 调用base::operator new

如果base类的operator new不想费功夫专门去处理这种情况——这种情况出现的可能性不大——那最简单的办法是把这个“错误”数量的内存分配请求转给标准operator new来处理,象下面这样:

void * base::operator new(size_t size)
{
if (size != sizeof(base)) // 如果数量“错误”,让标准operator new
return ::operator new(size); // 去处理这个请求
//
... // 否则处理这个请求
}

上面代码忘了检查一种虽然不合理但是有可能出现的一种情况——size有可能为零。但实际上检查还是做了,只不过融合到size != sizeof(base)语句中了。c++标准很怪异,其中之一就是规定所有独立的(freestanding)类的大小都是非零值。所以sizeof(base)永远不可能是零(即使base类没有成员),如果size为零,请求会转到::operator new,由它来以一种合理的方式对请求进行处理。(如果base不是独立的类,sizeof(base)有可能是零)。

如果想控制基于类的数组的内存分配,必须实现operator new的数组形式——operator new[](这个函数常被称为“数组new”)。写operator new[]时,要记住面对的是“原始”内存,不能对数组里还不存在的对象进行任何操作。实际上,甚至还不知道数组里有多少个对象,因为不知道每个对象有多大。基类的operator new[]会通过继承的方式被用来为子类对象的数组分配内存,而子类对象往往比基类要大。所以,不能想当然认为base::operator new[]里的每个对象的大小都是sizeof(base),也就是说,数组里对象的数量不一定就是(请求字节数)/sizeof(base)。

重写operator new(和operator new[])时所有要遵循的常规就这些。对于operator delete(以及operator delete[]),情况更简单。所要记住的只是,c++保证删除空指针永远是安全的,所以要充分地应用这一保证。下面是非类成员形式的operator delete的伪代码:

void operator delete(void *rawmemory)
{
if (rawmemory == 0) return; file://如/果指针为空,返回
//
释放rawmemory指向的内存;
return;
}

这个函数的类成员版本也简单,只是还必须检查被删除的对象的大小。假设类的operator new将“错误”大小的分配请求转给::operator new,那么也必须将“错误”大小的删除请求转给::operator delete:

class base { // 和前面一样,只是这里声明了
public: // operator delete
static void * operator new(size_t size);
static void operator delete(void *rawmemory, size_t size);
...
};
void base::operator delete(void *rawmemory, size_t size)
{
if (rawmemory == 0) return; // 检查空指针
if (size != sizeof(base)) { // 如果size"错误",
::operator delete(rawmemory); // 让标准operator来处理请求
return;
}
释放指向rawmemory的内存;
return;
}

可见,有关operator new和operator delete(以及他们的数组形式)的规定不是那么麻烦,重要的是必须遵守它。只要内存分配程序支持new-handler函数并正确地处理了零内存请求,就差不多了;如果内存释放程序又处理了空指针,那就没其他什么要做的了。至于在类成员版本的函数里增加继承支持,那将很快就可以完成。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: